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Abstract

Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture
pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia,
however, is severely limited, due in large part to computational expense and the challenge posed by
the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em-
ployed only in regions susceptible to material failure are therefore highly desirable, yet available
coupling strategies have remained severely limited. This report is a summary of the Laboratory
Directed Research and Development (LDRD) project “Strong Local-Nonlocal Coupling for Inte-
grated Fracture Modeling,” completed within the Computing and Information Sciences (CIS) In-
vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local
and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate
a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly
reduce the mathematical incompatibility between local and nonlocal equations through reduction
of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation
of a blending-based coupling approach that may be applied either as the primary coupling strategy,
or in combination with the peridynamic partial stress. This blending-based approach is distinct
from general blending methods, such as the Arlequin approach, in that it is specific to the coupling
of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics
and classical continuum mechanics has also required innovations aimed directly at peridynamic
models. Specifically, the properties of peridynamic constitutive models near domain boundaries
and shortcomings in available discretization strategies have been addressed. The results are a class
of position-aware peridynamic constitutive laws for dramatically improved consistency at domain
boundaries, and an enhancement to the meshfree discretization applied to peridynamic models that
removes irregularities at the limit of the nonlocal length scale and dramatically improves conver-
gence behavior. Finally, a novel approach for modeling ductile failure has been developed, moti-
vated by the desire to apply coupled local-nonlocal models to a wide variety of materials, including
ductile metals, which have received minimal attention in the peridynamic literature. Software im-
plementation of the partial-stress coupling strategy, the position-aware peridynamic constitutive
models, and the strategies for improving the convergence behavior of peridynamic models was
completed within the Peridigm and Albany codes, developed at Sandia National Laboratories and
made publicly available under the open-source 3-clause BSD license.
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Chapter 1

Introduction

Peridynamics is a nonlocal extension of continuum mechanics that seeks to unify the mechanics
of continuous media, cracks, and particles [61, 64, 65]. Unlike classical approaches incorporating
partial derivatives, the peridynamic governing equations utilize integral expressions that remain
valid in the presence of discontinuities. The result is a consistent framework for capturing a wide
range of constitutive responses in combination with material failure. The application of peridy-
namics for system-level analyses is challenging, however, due largely to computational expense
and the need to specify constraints over a nonlocal volumetric boundary region [2, 43]. Addition-
ally, characteristics of nonlocal models, such as wave dispersion, are desirable in some cases but
undesirable in others.

This study focuses on enabling combined analyses, in which peridynamics is applied within
regions susceptible to material failure and classical continuum mechanics is applied elsewhere. A
primary result is the extension of peridynamics to facilitate a variable nonlocal length scale [67,
66]. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical in-
compatibility between local and nonlocal equations through reduction of the peridynamic horizon
in the vicinity of a model interface. It has been proven to provide exact solutions to a certain class
of equilibrium problems, and numerical experiments have demonstrated its viability for model
coupling within a computational simulation. A second result is the formulation of a blending-
based coupling approach [55, 2] that may be applied either as the primary coupling strategy, or
in combination with the peridynamic partial stress. This blending-based approach is distinct from
general blending methods, such as the Arlequin approach, in that it is specific to the coupling of
peridynamics and classical continuum mechanics. This specialization manifests as an additional
coupling term that mitigates so-called ghost forces at local-nonlocal interfaces.

Facilitating the coupling of peridynamics and classical continuum mechanics has also required
innovations aimed directly at the peridynamic models. Specifically, the properties of peridynamic
constitutive models near domain boundaries and shortcomings in available discretization strate-
gies have been addressed. The results are a position-aware peridynamic constitutive law [37] for
dramatically improved consistency at domain boundaries, and an enhancement to the meshfree
discretization often applied to peridynamic models that removes irregularities at the limit of the
peridynamic horizon [51, 56].

Local-nonlocal coupling strategies and improved peridynamic models developed in this study
have been implemented in the Peridigm [46, 48] peridynamics code and the Laboratory for Com-

15



putational Mechanics module of the Albany [50] code. Both Peridigm and Albany are open-source
software that leverage Trilinos [25, 26] agile components and are distributed under the 3-clause
BSD license. Combined peridynamic and classical continuum mechanics simulations have been
enabled within a single, unified executable. Nonlocal domains are modeled using the meshfree
peridynamic discretization of Silling and Askari [63, 32] while local domains are discretized us-
ing standard finite-element approaches. The coupling of local and nonlocal models provides an
integrated fracture modeling capability that combines the strengths of peridynamics with those of
classical continuum mechanics.

This report is organized as follows. Chapters 2 and 3 present strategies for the direct coupling
of local and nonlocal models. An extension to peridynamic models allowing for a variable non-
local length scale is presented first, followed by a blending-based coupling approach specific to
peridynamics and classical continuum mechanics. Next are chapters covering improvements to
peridynamics that increase compatibility with classical models and strengthen peridynamics as an
engineering tool. A new class of position-aware constitutive models is given in Chapter 4, followed
by improvements to the convergence behavior of peridynamics in Chapter 5, and a novel method
for incorporating classical ductile failure models within the peridynamic framework in Chapter 6.
Details regarding the software implementation strategy employed in this study are given in Chap-
ter 7. A complete list of publications and presentations resulting from this project is given in
Appendix A.
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Chapter 2

Variable Nonlocal Length Scale for
Peridynamic Models

2.1 Introduction

In the peridynamic theory, the classical (local) partial differential equations of solid mechanics are
recovered in the limit of zero length scale [21, 68]. Therefore, the problem of local-to-nonlocal
coupling can be viewed as the problem of changing the length scale within a region as a function
of position. In this chapter, we report on our research that, first, shows that this length scale (the
peridynamic horizon) cannot be varied arbitrarily without resulting in spurious “ghost forces” that
create undesirable features in the solution. Second, we discuss new techniques to address this
problem, resulting in viable methods for local-to-nonlocal coupling. A complete treatment of the
work summarized in this chapter may be found in [67, 66].

The peridynamic theory is a strongly nonlocal formulation of solid mechanics, based on long-
range forces, that is adapted to the study of continuous bodies with evolving discontinuities, in-
cluding cracks [65]. Each material point x in the reference configuration of a body B interacts
through the material model with other material points within a distance δ (x) of itself. The maxi-
mum interaction distance δ (x) is called the horizon of x. The material points within the horizon of
x comprise a set called the material family of x:

Fx =
{

q ∈B : 0 < |q−x| ≤ δ (x)
}
.

The vector from x to any neighboring material point q ∈Fx is called a bond, ξξξ = q−x. The set
of bonds from x to its neighbors within its horizon is called the family of x, denoted Hx:

Hx =
{

ξξξ ∈ R3 : x+ξξξ ∈Fx

}
.

In an elastic peridynamic solid, the strain energy density W (x) is determined by the collective
deformation of Fx. To express this collective deformation, it is convenient to define the function
Y[x, t]〈 · 〉 : Hx→R3 that maps bonds into their images under the deformation y. For any material
point q ∈Fx at time t, let

Y[x, t]〈q−x〉= y(q, t)−y(x, t). (2.1)

17



The function Y[x, t]〈 · 〉 is called the deformation state. States are mappings from bonds in a family
to some other quantity. The inner product of two states A and B is defined by

A•B =
∫
H

A〈ξξξ 〉 ·B〈ξξξ 〉 dVξξξ . (2.2)

In an elastic material, the strain energy density W (x) depends through the material model on
the deformation state, and this dependence is written

W (x) = Ŵ (Y[x]).

In manipulating functions of states such as W , it is helpful to introduce the Fréchet derivative. The
Fréchet derivative ŴY is a functional derivative with the property that if δY is a small increment in
the deformation state,

Ŵ (Y+δY) = Ŵ (Y)+ŴY(Y)•δY+O(‖δY‖). (2.3)

(Note that ŴY is a state-valued function even though Ŵ is scalar-valued.)

The equilibrium equation in peridynamics can be obtained from the Euler-Lagrange equation
associated with stationary values of total potential energy. This equation is given by

Lpd(x)+b(x) = 0 (2.4)

for all x ∈B. Here, the peridynamic internal force density at x is given by

Lpd(x) =
∫
B

{
T[x]〈q−x〉−T[q]〈x−q〉

}
dVq, (2.5)

where T[x] is the force state at x, which is related to the strain energy density by

T[x] = ŴY(Y[x]). (2.6)

The pairwise bond force density f on a point x due to interaction with any point q ∈Fx is given by

f(q,x) = T[x]〈q−x〉−T[q]〈x−q〉. (2.7)

As shown in [31], the peridynamic internal force density can be expressed without approxima-
tion as

Lpd = ∇ ·νννpd on B

where νννpd is the peridynamic stress tensor field defined for any x by

ννν
pd(x) =

1
2

∫
S

∫
∞

0

∫
∞

0
(v+w)2f(x+ vm,x−wm)⊗m dw dv dΩm (2.8)

where S is the unit sphere, dΩm is a differential solid angle in the direction of the unit vector m,
and f is given by (2.7).
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In a uniform deformation, there is a constant tensor F such that y(x) = x0 +Fx for all x. If the
deformation is uniform and the body is homogeneous and occupies R3, then it is easily shown that

ννν
pd = ννν

0 (2.9)

where ννν0 is the collapsed stress tensor defined by

ννν
0 =

∫
H

T̂(F)〈ξξξ 〉⊗ξξξ dVξξξ . (2.10)

Also define the collapsed internal force density field by

L0 = ∇ ·ννν0 on B. (2.11)

As discussed in [68], the collapsed stress tensor is an admissible first Piola-Kirchhoff stress tensor
whose constitutive model depends on the local deformation gradient tensor through (2.10). The
collapsed internal force density field provides the “local limit of peridynamics” in the sense that as
δ → 0,

Lpd→ L0

provided the deformation is twice continuously differentiable and T̂ obeys the scaling relation
derived in the next section.

2.2 Rescaling a material model at a point

Suppose an elastic material model is given for a particular value of horizon (without loss of gen-
erality, we will assume that this horizon is 1), and call the strain energy density function Ŵ1. An
elastic material model with a different horizon δ has the same bulk response provided

Ŵ (Y) = Ŵ1(Y1) (2.12)

where Y1 is the reference deformation state defined by

Y1〈n〉= δ
−1Y〈δn〉 ∀n ∈H1 (2.13)

where H1 is the family of x with horizon 1.

As shown in detail in [67, 66], the force state rescales for any δ according to

T̂(Y)〈ξξξ 〉= δ
−(1+D)T̂1(Y1)〈δ−1

ξξξ 〉 ∀ξξξ ∈H (2.14)

where D is the number of dimensions and Y1 is given by (2.13). T̂1 is called the reference material
model. Furthermore, the collapsed stress tensor, like W , is invariant to changes in δ .

A peridynamic body B is a variable scale homogeneous (VSH) body if for some reference
material model T̂1, the material model at any point x follows the scaling relation (2.14):

T̂(Y[x],x)〈ξξξ 〉= 1
(δ (x))1+D T̂1(Y1[x])

〈
ξξξ

δ (x)

〉
ξξξ ∈Hx. (2.15)
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2.3 Ghost forces

Here we demonstrate that in the absence of body forces, a uniform deformation of a VSH body is
not necessarily in equilibrium. To see this, assume that δ is twice continuously differentiable, and
compute the net internal force density Lpd(x). For a uniform deformation of a VSH body, from
(2.5) and (2.15), for any x,

Lpd(x) =
∫
{T[x]〈q−x〉−T[q]〈x−q〉} dVq

=
∫ {

δ
−(1+D)(x)T1〈m〉−δ

−(1+D)(q)T1〈n〉
}

dVq (2.16)

where
m =

q−x
δ (x)

, n =
x−q
δ (q)

. (2.17)

(All volume integrals are over R3.)

It is shown in detail in [67, 66] that,

Lpd(x) = O(|∇∇δ |)O(‖T1‖). (2.18)

The departure from equilibrium represented by nonzero values of Lpd is called ghost force and is
an artifact of the position dependence of the horizon. Observe that the leading term in the ghost
force depends on the second derivative of δ . In fact, it can be shown directly that if δ is a linear
function of position, then the ghost force vanishes.

An illustration of the effect of ghost force in a VSH bar in equilibrium is shown in Figure 2.1.
The peridynamic reference material model T̂1 is a bond-based model [61] with a nominal Young’s
modulus of 1. The horizon in the bar depends on position as shown in the top figure. The numerical
approximation method is discussed in detail in [67, 66] and is similar to the meshless method
described in [63]. Two cases are considered for dependence of the horizon: piecewise linear (“not
smoothed”) and cubic spline (“smoothed”). The ends of the bar have prescribed displacements
corresponding to a nominal strain in the bar of 1. The strain (defined as du/dx) in equilibrium for
the two cases is shown in the lower figure (strain is computed numerically using a central finite
difference formula). If there were no ghost forces, the strain would be constant and equal to 1.
Because of ghost forces, anomalies in strain (“ghost strains”) appear that equilibrate the ghost
forces. The smoothed δ (x) has lower ghost strains than the non-smoothed case. This result is
consistent with (2.18), which predicts ghost forces proportional to the second derivative of δ (x).

2.4 Partial stress field

Here we investigate a modified form of the momentum balance that eliminates ghost forces in a
VSH body under uniform deformation. The momentum balance is expressed in terms of a new
field called the “partial stress” tensor field.
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Figure 2.1: Ghost strain in a VSH body in equilibrium. Top: horizon as a function of position.
Bottom: strain as a function of position.
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Consider a peridynamic body B and let its force state field T be given. Let the partial stress
tensor field νννps be defined by

ννν
ps(x) =

∫
Hx

T[x]〈ξξξ 〉⊗ξξξ dVξξξ ∀x ∈B. (2.19)

Also define the partial internal force density by

Lps(x) = ∇ ·νννps(x) ∀x ∈B. (2.20)

In a VHS body under uniform deformation, νννps = ννν0, moreover,

ννν
ps(x) =

∫
H1

T̂1(Y1[x])〈n〉⊗n dVn ∀x ∈B (2.21)

where Y1 is given by (2.13). Since, in a uniform deformation, Y1 is constant (and equal to F), it
follows that that in a VSH body under uniform deformation,

ννν
ps ≡ ννν

0 ≡ 0, Lps ≡ L0 ≡ 0. (2.22)

This establishes that, for a VSH body under uniform deformation, ghost forces are absent in the
partial stress formulation of the momentum balance equation. This observation suggests that the
partial stress could be used in subregions of a body where the horizon changes, while the full
peridynamic equations (or the local PDEs) could be used where it is constant (or zero).

The first task in investigating this possibility is to determine the errors that occur at the bound-
ary between a partial stress region and a fully peridynamic region. As shown in [67, 66], these
errors can be estimated from

ννν
pd−ννν

ps = O(δ )O(‖∇T1‖) on B, (2.23)

Lpd−Lps = O(δ )O(‖∇∇T1‖) on B. (2.24)

Because of (2.24), it follows that at the interface between subregions where Lps and Lpd are used
in the momentum balance, there are no ghost forces if the deformation is uniform (since T1 is
constant on B).

The above analysis showed how well the partial stress equations approximate the peridynamic
equations. Similar analysis compares the partial stress equations with the local PDEs. The results
are summarized in the following estimates:

ννν
ps−ννν

0 = O(δ )O(‖∇T1‖) on B (2.25)

where νννps and ννν0 are defined by (2.19) and (2.10), and

Lps−L0 = O(δ )O(‖∇∇T1‖) on B (2.26)

where Lps and L0 are defined by (2.20) and (2.11).

Comparing (2.23) with (2.25), and comparing (2.24) with (2.26), it follows that

ννν
pd−ννν

0 = O(δ )O(‖∇T1‖) on B, (2.27)

Lpd−L0 = O(δ )O(‖∇∇T1‖) on B. (2.28)

This result is consistent with the conclusion in [68] that the collapsed internal force density is the
“local limit of peridynamics.”
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2.5 Splice between two peridynamic subregions

Let two values of horizon be denoted δ+ and δ−, and assume δ− ≤ δ+. Let a reference mate-
rial model T̂1 be given. Suppose, for a given deformation, two force state fields are computed
everywhere using (2.14). For any x ∈B,

T+[x]〈ξξξ 〉=
1

δ
1+D
+

T̂1(Y1[x])〈ξξξ/δ+〉, T−[x]〈ξξξ 〉=
1

δ
1+D
−

T̂1(Y1[x])〈ξξξ/δ−〉.

Further suppose that B is divided into two disjoint subregions B+ and B− and that the internal
force density at any x ∈B is given by

L(x) = Lsplice(x) :=


∫
B

{
T+[x]〈q−x〉−T+[q]〈x−q〉

}
dVq if x ∈B+,∫

B

{
T−[x]〈q−x〉−T−[q]〈x−q〉

}
dVq if x ∈B−.

The resulting model of B is called a splice of the subregions B+ and B−.

A splice is not the same as a VSH with δ (x) prescribed as a step function. The difference
is that in a splice, a point x near the interface “sees” the force states on the other side of the
interface corresponding to the same value of horizon as itself, δ (x). In contrast, in a VSH, each
point is assigned a unique value of horizon, and the force state at each point is uniquely computed
according to this horizon. In many applications, a splice provides a viable and convenient way to
model a VSH body that has piecewise constant values of horizon.

2.6 Local-nonlocal coupling

One option for local-nonlocal coupling is to use the partial stress field as a bridge between local
and peridynamic subregions. In this approach, B is divided into disjoint subregions B0, Bps, and
Bpd. To avoid ghost forces under uniform deformation, δ > 0 is assumed to be constant in Bpd.
Changes in δ occur entirely within Bps, so that δ is continuous on B. (Recall from (2.22) that
νννps ≡ ννν0 and Lps ≡ L0 where δ ≡ 0.) The internal force density is given by

L(x) =

 Lpd(x) if x ∈Bpd,
Lps(x) if x ∈Bps,
L0(x) if x ∈B0.

(2.29)

The convergence properties of this method were derived in (2.24) and (2.26).

Another option for local-nonlocal coupling is to use the idea of a splice described in the previ-
ous section. The body is divided into disjoint subregions B0 and Bpd that use the local model and
the full peridynamic model (constant δ > 0), respectively. The internal force density in the splice
model is given by

L(x) =
{

Lpd(x) if x ∈Bpd,
L0(x) if x ∈B0.

(2.30)
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The convergence properties of such a splice model are given by (2.28).

These two options for local-nonlocal coupling differ primarily in the way they transmit waves
whose wavelength is smaller than or on the order of δ . As an example, we apply these two methods
for local-nonlocal coupling to the problem of spall initiated by the impact of two brittle elastic
plates. The impactor has half the thickness of the target and strikes the target from the left side.
As shown in the wave diagram in Figure 2.3, the compressive waves that issue from the contact
surface between the impactor and the target eventually intersect each other at the midplane of the
target plate. When this happens, the waves, which by that time are both tensile, reinforce each
other to create a thin region where the stress is strongly tensile. Within this tensile region, the
strength of the material is exceeded and a crack forms. The formation of this crack creates relief
pulses that move in both directions. The velocity induced by the rightward-moving relief pulse as
it reflects from the free surface of the target bar can be measured using VISAR or other techniques
[22]. With the help of analysis or computational modeling, the exact characteristics of the crack
release (or “pullback”) pulse can be interpreted using suitable data processing techniques to reveal
the dynamic strength properties of materials under strong tension (spall).

In the computational model of this spall experiment, the impactor and target plates have thick-
nesses of 20 and 40 respectively. The impact velocity is 0.1. The elastic modulus and density of
both plates are 1. The reference material model T̂1 is the bond-based prototype microelastic brit-
tle (PMB) material model [63] with a critical bond strain for failure of 0.04. The entire region is
discretized into 1000 nodes. The objective is to model the relatively small part of the body where
damage can occur using the full peridynamic equations. This peridynamic region is coupled to
local regions using either of two methods:

• Partial stress: a peridynamic region of thickness 10, centered at the midpoint of the target
plate, is enclosed by layers of thickness 4 where the partial stress method is applied. Beyond
this, the local equations are used. In the peridynamic and partial stress regions, the horizon
is δ = 0.13.

• Splice: a peridynamic region of thickness 10 and horizon δ = 0.13, centered at the midpoint
of the target plate, is spliced to local regions.

For comparison, results using the full peridynamic model in the entire domain (δ = 0.13 through-
out) are also computed.

The computed velocity profile using the splice method for local-nonlocal coupling is shown in
Figure 2.2. The time of this snapshot is t = 70. Comparing this figure with the wave diagram in
Figure 2.3, a number of salient features may be seen. The crack appears as a sharp jump in velocity
as a function of position x = 40. The two release (pullback) pulses move away from the crack at
the wave velocity, which is c = 1.0. The computed velocity history at the free surface is shown
in Figure 2.4. The dips in velocity represent the crack release pulse created in the interior of the
target due to spall.

As shown in the figures, the three methods give nearly the same results in this example. How-
ever, a fully peridynamic model in multiple dimensions would require a much higher computational
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Figure 2.2: Velocity as a function of position at t = 70 in the spall example problem using the splice
method for local-nonlocal coupling. There are no significant artifacts from the local-nonlocal
transitions, which are located at x = 37 and x = 43.

cost due to the large number of nonlocal interactions required to discretize the material model. So,
in multiple dimensions, in problems where damage is confined to a small subregion, the splice or
partial stress methods potentially offer a significant reduction in cost, while avoiding ghost forces.
This anticipated cost reduction is a primary motivation for development of local-nonlocal coupling
methods.
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Figure 2.4: Velocity history at the free (right) surface of the target plate, showing the release pulse
from the dynamic fracture occurring in the interior of the target bar. The three curves are for fully
peridynamic (PD), local-nonlocal coupling using partial stress (PS), and local-nonlocal coupling
using a splice.
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Chapter 3

Blending-Based Coupling Approach

3.1 Introduction

Techniques for coupling local and nonlocal models can greatly expand the application space of
peridynamics (PD). A foremost concern is computational expense, which in practice limits the use
of PD in large-scale, geometrically complex simulations. The meshfree approach proposed in [63]
is the most widely used discretization method in PD to date. For discretizations of this type, the
computational cost and memory requirements are strongly tied to the number of interactions in
a model, which depends on the ratio between the horizon and the distance between neighboring
nodes. When this ratio becomes large, simulations can be intractable. The computational burden
of PD is also evident in the structure of tangent stiffness matrices for implicit time integration. The
number of nonzero elements in a PD stiffness matrix grows rapidly as the above-mentioned ratio
increases, resulting in a bandwidth that is typically much larger than that of the stiffness matrix
associated with a corresponding classical continuum mechanics (CCM) model. The same obser-
vation applies to finite element discretizations of PD models, when the horizon is large relative to
the mesh size [58]. A second motivation for local-nonlocal coupling is the desire to combine the
strengths of PD with those of CCM, for example as implemented in a traditional finite-element
analysis code. The most obvious strength of PD models is their ability to capture pervasive ma-
terial failure. Other traits of PD models may or may not be desirable in practice; for example,
PD models introduce wave dispersion not always represented in CCM models [61, 57]. In addi-
tion, many classical finite element codes contain an array of features not widely available in PD
codes, for example structural elements such as beams and joints. A third motivation for concurrent
coupling of local and nonlocal models is the challenge posed by the imposition of nonlocal bound-
ary conditions. Nonlocal models require the extension of classical boundary conditions, so that
instead of these conditions being imposed on boundary surfaces, they are imposed in volumetric
regions [54, 19, 1]. Many times, such extension is not well-defined. Concurrent coupling methods,
however, offer the possibility to solve nonlocal problems equipped with classical local boundary
conditions.

In [68], it was shown that PD converges to CCM in the limit of vanishing nonlocality, under
proper regularity assumptions. In fact, it can be shown that for a certain class of problems, char-
acterized by smooth deformations, PD and corresponding CCM models exhibit the same material
response, as demonstrated below. As a consequence, it seems reasonable to replace PD governing
equations with corresponding CCM equations in domains where the models behave similarly. In
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that case, PD models could be applied in regions where discontinuities may be present, and CCM
models could be used far from such regions, where displacement fields are smooth. Simulations
based on a coupled PD/CCM model can result in efficient and accurate solutions of PD problems.
The main challenge lies in the design of algorithms that properly couple the two models across
interfaces.

There is a vast literature in the field of concurrent multiscale material modeling concerning
methods for coupling nonlocal and local models. Specifically, approaches to concurrently couple
nonlocal atomistic (discrete) models and local continuum models have been proposed. Such ap-
proaches are commonly referred to as atomistic-to-continuum (AtC) coupling methods. Common
examples of AtC coupling methods include the Arlequin method [5, 49, 7, 18], the quasicontinuum
method [29, 60, 69], blending methods [3, 4, 12, 23], and bridging domain methods [6, 75, 53],
among others. A known problem, commonly present in these types of methods, is the appearance
of spurious effects across transition regions connecting the nonlocal and local domains. These
effects include the following: presence of “ghost forces” (i.e., forces acting on particles in equi-
librium positions), failure to pass “patch tests” defined by uniform strain solutions, lack of energy
preservation, breakdown of Newton’s third law, and appearance of artificial wave reflections. Such
effects are not present when using either of the reference models and are a result of the enforced
coupling. In the case of AtC coupling, the atomistic and continuum models possess very disparate
mathematical natures: the atomistic model is discrete, whereas the other model is continuum; the
atomistic model is nonlocal, whereas the other model is local. Furthermore, the length and time
scales at which atomistic and continuum models are typically applied differ by orders of magni-
tude. The situation is different in the coupling of PD and CCM models. First, both PD and CCM
are continuum theories. Second, nonlocal PD models can be clearly connected to local CCM
counterparts through a limiting process. Third, many of the problems that PD models are applied
to are characterized by the same length and time scales as in CCM. These properties facilitate the
derivation and analysis of coupling schemes involving PD and CCM models.

The coupling approach presented here belongs to the class of blending methods. In those meth-
ods, the domain of interest is decomposed into subdomains described by different models and a
blending region where the models are blended. A blending function is then introduced to charac-
terize each domain as well as to weight the contribution of each model across the blending region.
Blending approaches typically appear in two flavors. In energy-based blending schemes, blended
energy partitions are employed, possibly with certain constraints. In contrast, in force-based blend-
ing schemes the coupling is performed directly at the force level, using blended governing equa-
tions. The method presented here is a force-based blending approach.

3.2 Connections between peridynamic and classical models

For simplicity, we focus on linear isotropic microelastic bond-based PD models with a pairwise
equilibrated reference configuration [61]. Let B be a continuum body. The corresponding PD
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equilibrium equation for a point x ∈B is∫
B

λ (‖ξξξ‖)(ξξξ ⊗ξξξ )
(
u(x′)−u(x)

)
dVx′ =−b(x), (3.1)

where u is the displacement field, ξξξ := x′− x is the relative reference position vector or bond,
b is a prescribed body force density field, and λ is a scalar-valued function depending on the bond
length. It is assumed that each point in a body directly interacts with other points in that body
within its neighborhood; the neighborhood of x is defined as

H (x,δ ) :=
{

x′ ∈ Rd : ‖x′−x‖6 δ

}
, (3.2)

where δ is referred to as the PD horizon and d = 1,2,or 3 is the dimension, so that λ (‖ξξξ‖) = 0
for ‖ξξξ‖> δ [61].

We now demonstrate that under proper regularity assumptions on the deformation, the PD
equilibrium equation (3.1) reduces to the Navier-Cauchy equation of classical elasticity. Such
connection is established for points in the bulk of a material, i.e., far from boundaries, and it is
later employed as part of the derivation of the blended model. Let the internal subregion of B be
defined as

B0,δ := {x ∈B : H (x,δ )⊂B} (3.3)

and assume that for x ∈B0,δ the displacement field u is smooth, so that for ‖ξξξ‖6 δ the following
Taylor expansion holds:

u(x′) = u(x)+(ξξξ ·∇)u(x)+
1
2
(ξξξ ·∇)(ξξξ ·∇)u(x)+O(‖ξξξ‖3). (3.4)

We can then write (3.1) as[∫
H (0,δ )

λ (‖ξξξ‖)ξiξ jξkdVξξξ

]
∂u j

∂xk
(x)êi +

1
2

[∫
H (0,δ )

λ (‖ξξξ‖)ξiξ jξkξ`dVξξξ

]
∂ 2u j

∂xk∂x`
(x)êi

+O(δ 2) =−b(x), (3.5)

where we used a change of integration variable, the Einstein summation convention for repeated
indices, and êi as a unit vector in the ith direction. Due to the symmetry of the integration range,
the first term on the left-hand side of (3.5) vanishes, because its integrand is antisymmetric. In a
further Taylor expansion, the term containing third partial derivatives vanishes as well. Therefore,
the leading term contributing to the truncation error is the one containing fourth partial derivatives
of the displacement field, giving the O(δ 2) error in (3.5). We observe that [55]

Ci jk` :=
1
2

∫
H (0,δ )

λ (‖ξξξ‖)ξiξ jξkξ`dVξξξ =
(
δi jδk`+δikδ j`+δi`δ jk

) Λ

3
, (3.6)

where δi j is the Kronecker delta, |H (0,1)| is the size of a neighborhood of unit horizon, i.e., its
volume, area, or length for d = 3,2, or 1, respectively, and

Λ :=
3
2
|H (0,1)|

d +2

∫
δ

0
λ (r)rd+3dr. (3.7)
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In the limit as δ → 0, assuming Λ < ∞, Eq. (3.5) becomes

2Λ

3

(
∂ 2u j

∂xi∂x j
(x)+

1
2

∂ 2ui

∂xk∂xk
(x)
)

êi =−b(x). (3.8)

Equation (3.8) is the Navier-Cauchy equation of classical elasticity, for a fixed Poisson’s ratio of
ν = 1/4 in 3D or ν = 1/3 in 2D with Young’s modulus E = 5Λ/6 in 3D, E = 8Λ/9 in 2D, or
E = Λ in 1D. The restriction on the Poisson’s ratio is due to the choice of a bond-based PD model.
A general isotropic linear elastic state-based PD model would converge instead to a classical elastic
model with two independent elastic moduli [61, 64].

3.3 A consistent force-based blending scheme

The derivation here is based on the work presented in [55]. Let the domain B be divided into three
non-overlapping regions: BPD, BCCM, and Bb, so that B = BPD∪BCCM∪Bb. A scalar-valued
blending function is introduced, satisfying

β (x) =


1 x ∈BPD,
0 x ∈BCCM,

β̂ (x) x ∈Bb,

(3.9)

where β̂ : Rd → (0,1) is taken as a continuous polynomial. We define the mean value of the
blending function at x ∈B as

〈β 〉(x) :=

∫
H (x,δ )∩B

β (x′)dVx′∫
H (x,δ )∩B

dVx′
. (3.10)

The function 〈β 〉 takes a value of 1 in B0,δ
PD and a value of 0 in B0,δ

CCM. Let the transition region be
defined as

Bt := {x ∈B : 0 < 〈β 〉(x)< 1} . (3.11)

We assume the material response in BPD\Bt to be described by the PD model (3.1). In BCCM\Bt,
we assume displacement fields are smooth, so that we can use instead the Navier-Cauchy equation
of classical elasticity (3.8). These two regions do not interact directly; they communicate through
the transition region, Bt.

To derive a force-based blending scheme, we take the PD governing equation (3.1) and begin by
splitting the contribution of the internal force into two terms, through the introduction of symmetric
weights based on the blending function, to obtain the equation∫

B

β (x)+β (x′)
2

λ (‖ξξξ‖)(ξξξ ⊗ξξξ )
(
u(x′)−u(x)

)
dVx′

+
∫
B

(
1− β (x)+β (x′)

2

)
λ (‖ξξξ‖)(ξξξ ⊗ξξξ )

(
u(x′)−u(x)

)
dVx′ =−b(x). (3.12)
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By introducing symmetric weights with respect to interchanging x and x′, we preserve the an-
tisymmetry of the integrand in each of the two terms on the left-hand side of (3.12). We now
observe that the second term on the left-hand side of (3.12) vanishes for x ∈ B0,δ

PD , because
β (x) = β (x′) = 1,∀x′ ∈H (x,δ ). Let us assume that the displacement field in B \B0,δ

PD is smooth
enough so that the Taylor expansion (3.4) holds for all points in that region and ‖ξξξ‖ 6 δ . In this
case, we can write (3.12) as∫

B

β (x)+β (x′)
2

λ (‖ξξξ‖)(ξξξ ⊗ξξξ )
(
u(x′)−u(x)

)
dVx′

+
∫
B

(
1− β (x)+β (x′)

2

)
λ (‖ξξξ‖)(ξξξ ⊗ξξξ )

[
(ξξξ ·∇)u(x)+

1
2
(ξξξ ·∇)(ξξξ ·∇)u(x)

]
dVx′+E(x)

=−b(x). (3.13)

The term E(x) in (3.13) contains higher-order gradients of the displacement field originated in the
Taylor expansion (3.4). We assume this term to be negligible; a bound for its magnitude will be
provided in Remark 1 below. Reordering terms, we obtain the blending scheme∫

B

β (x)+β (x′)
2

λ (‖ξξξ‖)(ξξξ ⊗ξξξ )
(
u(x′)−u(x)

)
dVx′

+

[∫
B

(
1− β (x)+β (x′)

2

)
λ (‖ξξξ‖)ξiξ jξkdVx′

]
∂u j

∂xk
(x) êi

+

[∫
B

(
1− β (x)+β (x′)

2

)
λ (‖ξξξ‖)ξiξ jξkξ` dVx′

]
1
2

∂ 2u j

∂xk∂x`
(x) êi =−b(x). (3.14)

We observe that for x ∈ B0,δ
PD , Eq. (3.14) reduces to the PD model (3.1), and for x ∈ B0,δ

CCM,
Eq. (3.14) reduces to the Navier-Cauchy equation of classical elasticity (3.8).

A model is said to be patch-test consistent if homogeneous deformations represent solutions to
static problems in that model, in the absence of external loads. We demonstrate now that the blend-
ing scheme (3.14) is patch-test consistent. Let u = Gx with G a constant displacement gradient.
In this case,

u(x′)−u(x) = Gξξξ ,
∂u j

∂xk
(x) = G jk ,

∂ 2u j

∂x`∂xk
(x) = 0.

A direct substitution shows that the blending scheme (3.14) is patch-test consistent.

Remark 1. The truncation error E(x) in (3.13) at x ∈B0,δ can be bounded, given a PD model
with λ (‖ξξξ‖) > 0 ∀ξξξ ∈ Rd , by considering higher-order gradients in the Taylor expansion (3.4),
as [55]

‖E(x)‖6d6(d +2)
12

Λ

3

{[
β (x)−β (x)

]
δ sup

j,k,`,m

∣∣∣∣∣ ∂ 3u j

∂xm∂x`∂xk
(x)

∣∣∣∣∣
+

[
1−

β (x)+β (x)
2

]
d δ

2 sup
x′∈H (x,δ )

j,k,`,m,n

∣∣∣∣∣ ∂ 4u j

∂xn∂xm∂x`∂xk
(x′)

∣∣∣∣∣
}
, (3.15)
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where Λ is given in (3.7) and

β (x) := max
x′∈H (x,δ )

β (x′) , β (x) := min
x′∈H (x,δ )

β (x′).

The error estimate (3.15) provides two pieces of information. First, it bounds the error incurred
across transition regions, due to the truncation of the Taylor expansion in (3.4). Second, it quan-
tifies the suitability of the classical local model to describe the material response in the classical
region. The first term inside the curly brackets, on the right-hand side of (3.15), only contributes
for points x in transition regions for which β (x)−β (x) 6= 0. The second term inside those curly
brackets, in contrast, may also give a nonzero contribution in the classical region, outside transi-
tion regions. However, wherever displacement fields can be approximated by a quadratic profile
within the neighborhood of a point, both of these terms are small.

3.4 A numerical example

We demonstrate numerically the performance of the blended model through a two-dimensional
example. Related one-dimensional examples are given in [52], and additional two-dimensional ex-
amples can be found in [55]. We look at a square plate with a horizontal rectangular slit at its center
under both tensile and shear loading. We assume a PD model given by (3.1) with λ (‖ξξξ‖)= c/‖ξξξ‖3

and c = 9E/πδ 3. Let the square plate be given by Bplate = (−1
2 ,

1
2)× (−1

2 ,
1
2) and the rectangular

slit by Bslit = (− 1
10 ,

1
10)× (− 1

120 ,
1

120). The domain of interest is thus B = Bplate \Bslit. In this
case, the domain has two boundaries: the outer boundary, ∂Bplate, and the inner boundary, ∂Bslit.
An illustration is given in Figure 3.1(a). The domain decomposition in the blended problem is
illustrated in Figure 3.1(c).

B

∂Bplate

∂Bslit

B0,δ
plate \Bslit

B \B0,δ
plate

6 6 6 6- - - -

BPD

Bb

BCCM

-�L1

6

?
H1

-�
L2

6

?

H2

(a) Square plate with rectangular slit (b) PD problem (c) Blended problem

Figure 3.1: (a) Geometry of a square plate with a horizontal rectangular slit. (b) Domain de-
composition in the PD problem into the solution domain and the boundary layer. (c) Domain
decomposition and boundary conditions in the blended problem.

The boundary conditions in the blended problem combine classical (local) boundary conditions
for the outer boundary, given by zero displacements on the bottom edge and u = (0.05,0.05)
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on the top edge, and nonlocal boundary conditions for the inner boundary, given by free-surface
conditions. In the PD problem, we also employ free-surface boundary conditions for the inner
boundary. To prevent surface effects in the PD problem, and to obtain consistent solutions between
the PD and blended problems, we use the numerical solution of the blended problem to impose
displacement boundary conditions in the boundary layer B \B0,δ

plate, adjacent to the outer boundary
(cf. Figure 3.1(b)).

We use a meshfree method [63] to discretize the PD model and a combined meshfree/finite-
difference approach to discretize the blended model. The blending function is chosen as piecewise
constant with β̂ = 0.5 in Bb (cf. (3.9)). The simulation results, using the parameters given in Ta-
ble 3.1, are presented in Figure 3.2, where deformed configurations are colored using the values
of the strain component εxx. The numerical results demonstrate that the blended model reproduces
the solution of the PD model at a reduced computational cost. In this case, the blended simulation
achieves a speedup of approximately 11× over the PD simulation. The efficiency of the blended
model can be further improved both by model adaptivity techniques, aimed at optimizing the do-
main decomposition geometry and/or the functional form of the blending function, and by adaptive
grid refinement, which can generate a discretization with a fine grid in the PD and transition regions
and a coarse grid in the classical region, as demonstrated in [52].

Table 3.1: Parameters for the rectangular slit simulations.

E δ ∆x L1 L2 H1 H2
1 0.05 1/120 1/5+4δ 1/5+6δ 1/60+4δ 1/60+6δ
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(a) Strain profile for the PD model.
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(b) Strain profile for the blended model.

Figure 3.2: Profiles for the strain component εxx in the deformed configuration.
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3.5 Concluding remarks

We derived a blending scheme to concurrently couple bond-based peridynamic and classical elas-
ticity models. The method proposed extends the work done for one-dimensional linear peridy-
namic models in [52] to bond-based peridynamic models in higher dimensions. For simplicity of
exposition, the results here were presented using linear bond-based PD models.

As opposed to other blending methods in the literature, the proposed method derives a blending
scheme from a single reference model. As a consequence, spurious effects, common in this type
of methods, are not present in this blended model. Specifically, the blended model proposed does
not exhibit ghost forces and is patch-test consistent. Numerical simulations demonstrated that
the blended model can be used to accurately reproduce solutions of peridynamic problems with
great computational savings. In the numerical results presented here, for instance, a speedup of
approximately 11× over the PD simulation is achieved by the blended model. Blended models
may provide a tool to simulate problems in peridynamics, where fully peridynamic simulations are
computationally too expensive, whereas solutions to classical elasticity significantly differ from
the peridynamic ones.

The blending scheme here was derived for elastic material models. As a result, peridynamics
was coupled to classical elasticity. However, many problems of interest in peridynamics concern
not only fracture, but also inelastic behavior. Although blending methods may ensure that regions
with discontinuities in displacement fields are contained within a peridynamic subdomain, this
may not be the case for inelastic material response. Extensions of the blending scheme proposed
to treat problems beyond elasticity, such as those involving plasticity or visco-elasticity/plasticity,
are thus required. Furthermore, applications of the blending scheme to time-dependent problems
may require additional studies to ensure that no significant wave reflection occurs, across transition
regions, in dynamic simulations.
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Chapter 4

Position-Aware Peridynamic Constitutive
Models

4.1 Introduction to Surface Effects

This chapter discusses progress toward handling surface effects for ordinary peridynamic consti-
tutive models. Without surface correction, discretized models of the peridynamic equations can
lead to an inconsistency with local models making this work an especially important aspect of
local-nolocal coupling. Under this LDRD, research in this area led to a new class of ordinary peri-
dynamic constitutive models referred to as position aware. A key advance was the development
of a position-aware linear solid (PALS) model (Mitchell, Silling and Littlewood) [37]. The PALS
model was extended to include linear viscoelasticity (Mitchell) [39] and significant progress was
made toward plasticity.

The PALS model is a state-based constitutive model [64] that improves upon the performance
of material models currently available in the literature. The primary motivation is the undesirable
behavior of certain peridynamic material models in the vicinity of free surfaces. This difficulty
appears, for example, in a peridynamic simulation of a uniaxial tension test, using the linear peri-
dynamic solid (LPS) constitutive model and the meshfree discretization approach of Silling and
Askari [63]; see Figure 4.1 for schematic/illustration of test. In this simulation, the displacements
at the end portions of the bar are prescribed, and the forces on the grips, Gy, are computed, along
with the engineering strain in the gauge, ε . The Young’s modulus may then be computed as

E =
Gy

Agε
,

where Ag is the undeformed cross-sectional area of the bar in the vicinity of the gauge. The
expected value of Young’s modulus is the slope of the green curve in Figure 4.2. Modern three-
dimensional finite element codes can accurately reproduce the Young’s modulus in a simulation
of the uniaxial tension test for a linear elastic material. However, a typical three-dimensional
peridynamic simulation using the LPS material model predicts the red curve in Figure 4.2. The
difference in slope between the two curves shows that the peridynamic model under-predicts the
load on the grips for a given value of strain. The LPS material parameters are calibrated for points
in the interior of a body and do not take into account whether a point is near a boundary [64].
Due to the nonlocality of the peridynamic equations, the LPS material model becomes inaccurate
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at points near a free surface. Here, some of the peridynamic bonds that would be present in the
interior are missing (Figure 4.3). Because bonds are missing, they do not contribute to the net
force on the cross-section of the gauge, hence the total force is under-predicted. While this effect
manifests for a number of constitutive models, it it not present for all models; correspondence
models are an exception because missing bonds are compensated for by the shape tensor K.

The under-prediction of force at material points near a free surface is often referred to as the
surface effect in peridynamics. This effect presents a practical difficulty in applying bond-based
models and ordinary state-based models such as the LPS. Approaches for mitigating the surface
effect have been proposed by Kikic, Macek and Silling, and Mitchell. Following a bond-based
approach, Kilic [28] proposed a position-aware correction that is computed iteratively for each
material point. Macek and Silling [35] developed a position-aware force normalization that scales
the stiffness of points near a surface using a ratio of eigenvalues from local 3×3 stiffness matrices,
where eigenvalues are computed (with the same material properties) for points near a free surface
and on the interior. Mitchell [38] developed a position-aware scaling of moduli for the LPS model,
but its efficacy was found to be somewhat sensitive to complex surface geometries.

The peridynamic theory of solid mechanics allows for great flexibility in the development of
constitutive models. In contrast to classical, local models, which rely on a kinematic descrip-
tion of material deformation at a point such as the deformation gradient, material models in the
peridynamic theory determine pairwise force densities based on the deformations of a nonlocal
family of neighboring material points [61, 65, 36]. This enrichment of kinematic information
greatly expands the range of possible constitutive laws. Peridynamic material models developed
to date fall into one of three categories: bond-based, ordinary state-based, and non-ordinary state-
based. Bond-based peridynamic models determine the pairwise force density that acts between
two material points based only on the histories of those points (e.g., initial and current positions).
The prototype micro-elastic brittle material model was the first peridynamic constitutive law to
appear in the literature [61]. This model served as the foundation for a subsequently developed
bond-based plasticity model [35]. The state-based theory for peridynamic constitutive models rep-
resents a significant generalization of the bond-based approach [64]. The theory of peridynamic
states allows for constitutive models in which pairwise force densities are functions of not only the
material points in question, but also the full set of material points within the nonlocal neighbor-
hoods of those material points. State-based constitutive models in which pairwise force densities
act in the direction of the corresponding bond in the deformed configuration are referred to as
ordinary state-based models. Examples include the linear peridynamic solid (LPS) [64] and the
plasticity and viscoelasticity models developed by Mitchell [41, 40]. The third class of material
models, non-ordinary state-based, is comprised of constitutive models in which pairwise force
densities are not restricted to act in the bond direction. The correspondence model approach, in
which classical (local) constitutive models are adapted for use within peridynamics, falls into this
category [64, 24, 71].

The PALS model is an alternative approach to peridynamic constitutive modeling in which
model parameters at a point reflect the point’s location within the body, removing the need for
auxiliary surface correction techniques. This position-aware approach is a significant departure
from previously developed constitutive models in that the constitutive model parameters are linked
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Figure 4.1: Uniaxial tension test schematic.

directly with the geometry of the body. The position-aware linear solid (PALS) model presented
herein is an extension of the LPS model that substantially reduces the surface effect. This is
accomplished by introducing influence functions that are calibrated according to the bulk elastic
properties at each material point, resulting in influence functions that differ for points near a free
surface and points on the interior of the body. Identification of the influence functions for each
point in the body is accomplished by solving a constrained minimization problem. Determination
of the influence functions within a computational simulation does not require an iterative process
and is instead achieved through the solution of a linear system of equations.

The PALS approach is unique with respect to the construction and use of position-aware in-
fluence functions. As very recently pointed out by Bessa, Foster, Belytschko, and Liu [8], only
constant valued influence functions have been studied. Apparently, the two exceptions are the
study by Seleson and Parks [59], and the approach for incorporating classical damage models into
state-based peridynamics by Tupek, Rimoli, and Radovitzky [72]. Seleson and Parks [59] used
influence functions to establish relationships between bond-based and state based peridynamics
models and did not consider position-aware influence functions. Influence functions developed by
Tupek et al. [72] are a product of a Gaussian and a binary valued function (0 or 1) depending upon
the state of damage between two points defining a bond; this is a position aware concept but is not
contextually related to the position aware concepts discussed here.

4.2 PALS Model

This section introduces the PALS model, including the elastic energy density, the scalar force state,
and construction of position aware influence functions; all of these elements are key aspects of the
PALS model. For a full accounting of the details, see [37].

The peridynamic theory of solid mechanics [61, 64, 65] is an extension of classical continuum
mechanics theory [13]. The peridynamics extension permits discontinuities in displacements by
replacing the stress divergence in the momentum equation with a volume integral

ρ(x)ÿ(x, t) =
∫
B

f(x′,x, t)dVx′+b(x, t), (4.1)

where y(x) is the current position vector of a material point x at time t, ρ is mass density in the
undeformed body B, f is a pairwise bond force density per unit volume, b is the usual body force
density, and x′ is an arbitrary material point within the neighborhood Hx of the point x.
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Figure 4.2: Stress-strain curve for a full 3D peridynamic model of the uniaxial tension test with
PALS and LPS, both on the same discretization.

Figure 4.3: Schematic of missing peridynamic bonds.
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A bond vector is defined by

ξ = x′−x, 0 < |ξξξ | ≤ δ ,

where δ is the horizon of the material. Conceptually, δ is a relevant length scale and defines a
spherical neighborhood Hx; it represents the maximum distance for nonlocal interactions in the
material model. Material points within the neighborhood Hx are referred to as the family of x. It
will be assumed throughout this chapter that δ is independent of x.

The deformed image of a bond ξξξ = x′−x is given by the deformation state Y:

Y[x, t]〈ξξξ 〉= y(x′, t)−y(x, t)
= (x′+u(x′, t))− (x+u(x, t)), (4.2)

where u is the displacement field. Further information on peridynamic states is given in [64].

The following scalar states are useful in material modeling:

• The undeformed bond length state x:

x〈ξξξ 〉= |ξξξ |.

• The deformed bond length state |Y|:

|Y|〈ξξξ 〉= |Y〈ξξξ 〉|. (4.3)

• The extension state e:
e〈ξξξ 〉= |Y|〈ξ 〉− x〈ξξξ 〉. (4.4)

In this chapter, scalar states are underlined and written using italics, such as e; vector states are
written using bold and underlined, as in Y. The dot product of two scalar states a and b is defined
by

a•b =
∫
Hx

a〈ξξξ 〉 b〈ξξξ 〉 dVξξξ .

Using the above quantities and definitions, the deviatoric extension state ε is constructed as

ε = e− θx
D

, (4.5)

where θ is a scalar called the dilatation (see 4.10 below). below).

This chapter is concerned with state-based constitutive models in which the pairwise bond force
density per unit volume f(x′,x, t) in (4.1) is given by

f(x′,x, t) = T[x, t]〈x′−x〉−T[x′, t]〈x−x′〉. (4.6)

The vector state T[x] is called the force state. In (4.6), f contains contributions from the force states
at both x and x′ (that is, both T[x, t] and T[x′, t]).
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In ordinary state-based constitutive models, the vector force state is always parallel to the
deformed bond vector and written as

T〈ξξξ 〉= t〈ξξξ 〉M〈ξξξ 〉, (4.7)

where t is a scalar state called the scalar force state, and M is a vector state that produces unit
vectors parallel to the deformed bond:

M〈ξξξ 〉= Y〈ξξξ 〉
|Y|〈ξξξ 〉

. (4.8)

The scalar force state for the PALS model is derived from an elastic energy density functional
defined at a point x as

W (θ ,ε) =
κθ 2

2
+µ(σε)• ε, (4.9)

where µ is the shear modulus and ε is defined in (4.5); σ is a called the deviatoric influence
function; the dilatation θ is defined using the extension state e

θ = (ωx)• e, (4.10)

where ω is an influence function and normalized such that the weighted volume m used in the LPS
is not needed (that is, m = 3). The scalar force state t is found by taking the Fréchet derivative of
W with respect to e and is given by

t =
(

κθ − 2µ

3
(σx)• ε

)
ωx+2µσε. (4.11)

Note that the PALS model uses two influence functions ω and σ , both of which are computed
and largely depend upon proximity to a surface – hence the name position-aware; relative to the
LPS model, they are conceptually a new approach to constitutive modeling. Details for computa-
tion of ω and σ can be found in the PALS model paper [37].

4.3 A Position Aware Viscoelastic (PAV́E) Model

This section introduces and discusses elements of the isotropic viscoelastic model [40] extended to
include the position-aware concepts presented in Section 4.2; the new model is called PAV́E [39];
for additional details, see the aforementioned references and the PALS model paper [37].

Extending PALS concepts to viscoelasticity begins with writing the elastic energy density func-
tional

W (θ ,ε) =
κθ 2

2
+µ∞(σε)• ε +∑

i
µi(ε− ε

i)σ • (ε− ε
i), (4.12)

where ε i is an inelastic extension state. The sum over i includes an arbitrary number of Maxwell
models (see Figure 4.4) in parallel with the peridynamics standard linear solid (see Figure 4.5).
Shear moduli are denoted by µ∞ and µi; a time constant τi =

ηi
µi

is defined for the ith mechanism.
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Figure 4.4: Maxwell model.

Figure 4.5: Standard linear solid.

The extension states ε i are governed by an evolution equation that ultimately must be evolved
forward in time for each bond; this equation is given by

ε̇
i〈ξ 〉+ 1

τi
ε

i〈ξ 〉= ε〈ξ 〉(t), (4.13)

where the brackets 〈ξ 〉 emphasize the evolution of the in-elastic extension state on each bond ξ .

The scalar force state t is given by

t = pωx+2µ∞σε +2∑
i

µiσ(ε− ε
i), (4.14)

where the PALS pressure p is defined by

p = κθ − 2µ∞

3
σε • x−∑

i

2µi

3
σ(ε− ε

i)• x. (4.15)

Influence functions ω and σ are computed as in the PALS model; time integration of this model is
implemented indentically to the original viscoelasticity model [40].

4.4 Demonstration calculations

Two demonstration calculations are provided here – one each for the PALS and PAV́E models.
The first calculation demonstrates the efficacy of the PALS approach for surface correction; the
second calculation uses the PAV́E model and hence demonstrates both the visocelasticity model
and the position-aware approach to surface correction. Additional demonstration calculations can
be found in the PALS model paper [37] and the peridynamics viscoelasticity model report [40].

The simulations were carried out using the Peridigm [46, 48] code following the meshfree
method of Silling and Askari [63]. All demonstration calculations are three-dimensional and re-
sults were obtained by solving the momentum equation under conditions of static equilibrium. The

41



Cubit code [17] was utilized to generate the discretization, and the Paraview code [44] was used
for visualization of results. For further discussion of the numerical solution procedure, see Silling
and Askari [63] and Littlewood [32].

4.4.1 Tension test

As a demonstration, the PALS model is applied to the motivation problem described in Section 4.1
(see Figure 4.1). A full three-dimensional model of the specimen was used. Improved accuracy in
reproducing E using the PALS model, compared with the LPS model, is shown in Figure 4.2.

4.4.2 Simple shear

The simple shear calculation presented in Figures 4.6 and 4.7 is particularly effective at demon-
strating the efficacy (or lack thereof) of correctly calculating energy density for homogeneous shear
deformations at points near the surface of an ordinary isotropic peridynamic body. A schematic of
the problem is shown in Figure 4.6 and a calculation of the elastic energy density as a function of
time for both the PALS model and the PAV́E model is shown in Figure 4.7. Note that there are
three calculations for the PAV́E model – one each for the PAV́E model parameters λ = .01, .50, .99;
these parameters refer to the peridynamics standard linear solid (SLS) model [40]. For the peridy-
namics SLS model, µ∞ = (1−λ )µ , and µ1 = λ µ , where µ is the shear modulus of the material.
For these calculations, and the calculations in the following section, a time constant τ1 = 2 seconds
was used. Note that PAV́E reduces to the PALS model and elastic behavior as λ → 0 and takes
on a fully viscoelastic character as λ → 1.0. The graphic on the left in Figure 4.7 illustrates the
uniformity of energy density as calculated by the PALS model – this is the expected value which
can be hand calculated based upon the local theory; although there are distinct colors illustrated
on the mesh, the color bar shows that values are essentially constant (within 4 significant digits)
across the 7×7×7 mesh of points.
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Chapter 5

Convergence of Peridynamic Models

5.1 Introduction

Peridynamics is based on integro-differential equations, where spatial integration is employed to
compute the contribution of internal forces in a body to the material response. Since govern-
ing equations in peridynamics are continuum models, they can be discretized in many ways [20].
Different discretization methods differ in software complexity, computational time and memory re-
quirements, and accuracy and convergence of numerical solutions. A proper discretization choice
may avoid polluting coupled local/nonlocal simulations with unnecessary discretization errors and
convergence issues. We thus investigate methods to improve current discretizations of peridynamic
models. A simple particle-based discretization for the strong form of peridynamic equations was
introduced in [63], where a set of nodes with known volume in a reference configuration was uti-
lized to discretize given domains. This discretization method is meshfree, because no elements or
geometrical connections between nodes are used. This meshfree approach is the most widely used
discretization method in engineering peridynamic simulations to date, due to its implementation
simplicity and relatively low computational cost, in comparison to other discretization methods. As
an example, finite element discretizations of governing equations are based on weak forms, which
for peridynamic equations double the number of spatial dimensions that need to be discretized [15].
In peridynamics, each material point is assumed to directly interact with a surrounding neighbor-
hood, and the interaction is computed through spatial integration. In meshfree discretizations,
integrals in peridynamic equations are converted into weighted sums. In [63], summation weights
are taken as nodal volumes.

The accuracy and convergence of the above-mentioned meshfree discretization depends on the
choice of summation weights. It is common to take those weights as approximations of the volumes
of the intersections between the neighborhood of a given node and the material regions or cells
defining the nodal volumes of surrounding nodes [51]. For surrounding nodes near the boundary
of the neighborhood of a given node, only a partial overlapping may exist between their cells and
that neighborhood. In those cases, we refer to the volume of the corresponding intersection as
a partial volume. Computing partial volumes requires, in general, highly complex geometrical
calculations. For instance, partial volume calculations in meshfree discretizations of peridynamic
equations with a set of nodes along a cubic grid, require the computation of intersections between
a ball and arbitrary cubes. Algorithms for approximations of partial volumes appear in [47, 45, 9,
76]. In two or one dimensions, corresponding “partial volumes” are referred to as partial areas
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or partial lengths, respectively. In [51], analytical calculations of partial areas for sets of nodes
along a square grid were derived, resulting in improved accuracy and convergence of numerical
integrations, for different peridynamic quantities of interest. Unless specified otherwise, we will
use the term partial volume in a general sense, to refer to a partial volume, to a partial area, or to a
partial length, in 3D, 2D, or 1D, respectively.

An alternative way to improve numerical integrations in peridynamics is to employ kernels
which decay to zero at the boundary of the neighborhood of a given node. The idea behind this
method is to reduce the contribution to the numerical integration of neighboring nodes near the
boundary of the neighborhood of a given node, mitigating the discretization error induced by the
inaccuracy of the approximation of partial volumes. This idea was briefly mentioned in [76] and
implemented in [51], employing smooth influence functions with a finite support. Numerical stud-
ies in [51] suggested that this method could provide a means to improve the accuracy and conver-
gence of numerical integrations in peridynamics.

We present here convergence studies of numerical solutions of static peridynamic problems,
in all three dimensions, using meshfree discretizations. The material here is based on the work
presented in [56]. We compute analytically partial lengths in 1D and partial areas in 2D, following
[51]. In 3D, we estimate numerically partial volumes through a combined strategy of recursive
subdivision and sampling. We also investigate the use of smooth influence functions with a finite
support to improve the accuracy and convergence of numerical solutions in peridynamics.

5.2 The meshfree discretization of peridynamic models

Given a body B ⊂Rd , d = 1,2, or 3, the peridynamic (PD) equation of motion for a material point
x ∈B at time t > 0 is

ρ(x)
∂ 2u
∂ t2 (x, t) =

∫
B

{
T[x, t]〈x′−x〉−T[x′, t]〈x−x′〉

}
dVx′+b(x, t), (5.1)

where ρ is the mass density, u is the displacement field, b is a prescribed body force density field,
and T is the force state field [64]. In PD, it is common to assume that a material point x ∈ B
interacts directly only with other material points within its neighborhood,

H (x,δ ) :=
{

x′ ∈ Rd : ‖x′−x‖6 δ

}
, (5.2)

which represents a closed ball, disk, or line segment in 3D, 2D, or 1D, respectively, centered at x,
where δ is a length scale called the PD horizon. As a consequence,

T[x, t]〈x′−x〉= 0 ∀x′ 6∈H (x,δ ). (5.3)

For a static problem, the PD equilibrium equation is written as

−
∫
B

{
T[x]〈x′−x〉−T[x′]〈x−x′〉

}
dVx′ = b(x). (5.4)
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Let LB be a set of nodes discretizing the body B and let τk be a material region or cell
represented by the node k. We assume that cells form a tessellation of the body, so that

⋃
k τk = B

and τk∩ τ` = /0 for k 6= `. In meshfree discretizations of PD equations, one can take the dynamics
of the node k as representative of the evolution of the entire cell τk. Following derivations in [56],
a discretization of (5.1) can be written as

ρi
d2ui

dt2 = ∑
j∈Fi

{
T[xi, t]〈x j−xi〉−T[x j, t]〈xi−x j〉

}
V (i)

j +bi, (5.5)

where ρi := ρ(xi), ui := u(xi, t), bi := b(xi, t), x j is the reference position of the node i, V (i)
j is a

quadrature weight, and Fi is the family of i, representing the set of all nodes in LB interacting
with the node i. We take the quadrature weight V (i)

j as an approximation to the volume (in 3D),
area (in 2D), or length (in 1D) of the intersection between the cell τ j and the neighborhood of xi

[51]. For a node j with a cell inside the neighborhood of xi, V (i)
j is taken as the full nodal volume;

for a node j near the boundary of the neighborhood of xi, however, V (i)
j is taken as a partial volume.

Further details regarding Fi and V (i)
j are provided in Section 5.2.1 below.

Remark 2. To accurately compute partial volumes, a reference mesh needs to be generated. In
dynamic simulations, partial volumes can be pre-computed and stored per bond, and the mesh
discarded afterwards. Consequently, the discretization approach in (5.5) can be still referred to as
“meshfree”.

5.2.1 Algorithms for the computation of partial volumes

We review three algorithms from the literature for the computation of partial volumes. These
algorithms assume a uniform grid with grid spacing h.

Algorithm FL, FA, FV (1D, 2D, 3D). The first algorithm was proposed in [63] as a simple
algorithm with

Fi = { j 6= i : x j ∈B ; ‖x j−xi‖6 δ} (5.6)

and the partial volumes approximated as full nodal volumes. We refer to this algorithm as FL (in
1D), FA (in 2D), or FV (in 3D), where “FL”, “FA”, and “FV” stand for Full Length, Full Area, and
Full Volume, respectively.

Algorithm PL-PDLAMMPS, PA-PDLAMMPS, PV-PDLAMMPS (1D, 2D, 3D). The sec-
ond algorithm appeared in [47, 45]. This algorithm uses the same definition (5.6) for the family
of i, but modifies the computation of partial volumes as follows: If ‖ξξξ‖+ h

2 > δ , then V (i)
j =

1
h

[
δ −

(
‖ξξξ‖− h

2

)]
Vj with Vj the nodal volume of the node j. We refer to this algorithm as

PL-PDLAMMPS (in 1D), PA-PDLAMMPS (in 2D), or PV-PDLAMMPS (in 3D), where “PL”,
“PA”, and “PV” stand for Partial Length, Partial Area, and Partial Volume, respectively, and PD-
LAMMPS is the name of a PD software [47].

Algorithm PL-HHB, PA-HHB, PV-HHB (1D, 2D, 3D). The third algorithm, presented in
[27, 9], extends the family of i in (5.6) as

Fi = { j 6= i : x j ∈B ; ‖x j−xi‖− h
2 6 δ}. (5.7)
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Note that the family of i in (5.7) may include nodes j such that ‖x j− xi‖ > δ . For such nodes,
the force state vanishes (cf. (5.3)). In that case, we relax the restriction (5.3) to allow for a non-
zero force state, even when it operates on a bond of length larger than δ . The same correction for
partial volumes as in the second algorithm is used. We refer to this algorithm as PL-HHB (in 1D),
PA-HHB (in 2D), or PV-HHB (in 3D), where “HHB” refers to the initials of the authors of [27]:
Hu, Ha, and Bobaru.

5.2.2 Influence functions in peridynamics

Influence functions are scalar-valued functions commonly used to determine the support of force
states. These functions have been introduced in [64] and their role in PD has been studied in [59].
In [51], it was demonstrated that employing smooth influence functions with a finite support mit-
igates the integration inaccuracy caused by neighboring nodes near the boundary of the neighbor-
hood of a given node. We employ influence functions of the form

ω(‖ξξξ‖) =

{
Pn(‖ξξξ‖)
‖ξξξ‖α ‖ξξξ‖6 δ ,

0 else,
(5.8)

where α = 0,1 is a model parameter and Pn(r) is a polynomial of order n∈N0, satisfying Pn(0) = 1
and Pn(δ ) = 0 for n > 0, and P′n(r) = P′′n (r) = . . .= P(k)

n (r) = 0 at r = 0,δ with k = (n−1)/2 for
n > 1. In Figure 5.1, we plot the different influence functions, in a one-dimensional system, for
each of the above polynomial choices.
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Figure 5.1: Influence functions in one dimension for (a) α = 0 and (b) α = 1, with different choices
of polynomial Pn(r) (cf. (5.8)) and δ = 1.
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5.3 A one-dimensional peridynamic problem

Let a linear bond-based PD model be given (in 1D) by the force state

T[x, t]〈ξ 〉= 1
2

cω(|ξ |)(u(x+ξ , t)−u(x, t)),

and let a one-dimensional static PD problem be−
∫ x+δ

x−δ

cω(|x′− x|)(u(x′)−u(x))dx′ = b(x), x ∈B,

u(x) = g(x), x ∈B \B,

(5.9a)

(5.9b)

where c is a constitutive constant, ω is an influence function, and g is a given function providing
displacement boundary conditions. We choose the computational domain as a unit line segment:
B = [0,1] and the inner domain as B =(δ ,1−δ ). Displacement boundary conditions are imposed
in the boundary layer B \B. An illustration is given in Figure 5.2.

B

δ δ

B \B

Figure 5.2: One-dimensional domain B composed of two non-overlapping subdomains: the inner
domain B and the boundary layer B \B.

The PD constant c is chosen using a connection between the PD equation (5.9a) and the classi-
cal (local) equation

−K
d2u
dx2 (x) = b(x) (5.10)

with K a constant, assuming quadratic displacement field, as

c =
2K
m

, (5.11)

where m is the weighted volume (cf. (5.18)) in 1D:

m =
∫

δ

−δ

ω(|ξ |)ξ 2dξ . (5.12)

We assume a one-dimensional static PD problem given by (5.9) with K = 1, δ = 0.04, b =−2,
and g(x) = x2. The value of b is found using the method of manufactured solutions, to ensure con-
sistency with the imposed boundary conditions. We discretize the problem with the discretization
scheme (5.5).
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We investigate the convergence of numerical solutions of Problem (5.9). We compute the PD
constant c by (5.11) with K = 1. The convergence study is performed as follows: we choose an ini-
tial number of computational nodes N = 75 (δ/h = 3) and gradually increase this number by one
until we reach N = 150 (δ/h = 6). We compare the algorithm FL in combination with different in-
fluence functions with the algorithms PL-PDLAMMPS and PL-HHB. Unless specified otherwise,
it is assumed that a given algorithm is used in combination with an influence function with P0(r).
We would like to compare the effect obtained by improving the computation of partial lengths
with the one obtained by using influence functions with increasing regularity. The convergence
results for different algorithms and influence functions are presented in Figure 5.3 for (a) α = 0
and (b) α = 1, where the error in the numerical solution is computed using an L2-norm.

We conclude that using the algorithm PL-HHB or the algorithm FL in combination with a
smooth influence function, improves the accuracy of the numerical solutions, for most grid spac-
ings, in comparison to utilizing the algorithms FL or PL-PDLAMMPS. The quality of the con-
vergence results for the algorithm PL-PDLAMMPS is as poor as for the algorithm FL. Using the
algorithm FL in combination with an influence function with P5(r) (PWQ) or P7(r) (PWS) gives
an asymptotic convergence rate of r ≈ 1.00 for α = 0, while resulting in convergence rates with
values r > 1 for α = 1. The convergence profile obtained with the algorithm PL-HHB, in con-
trast, is oscillatory; however, the amplitude of its oscillation is significantly smaller than the one
observed with the algorithms FL and PL-PDLAMMPS.
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Figure 5.3: Convergence of the numerical solution of Problem (5.9) using different algorithms
for approximation of partial lengths and different influence functions. The notation PWL, PWC,
PWQ, and PWS refers, respectively, to the choice of influence function with polynomial P1(r),
P3(r), P5(r), and P7(r).
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5.4 A two-dimensional peridynamic problem

Let a linear bond-based PD model be given by the force state

T[x, t]〈ξξξ 〉= 1
2

cω(‖ξξξ‖)ξξξ ⊗ξξξ

‖ξξξ‖2 (u(x+ξξξ , t)−u(x, t)) ,

and let a two-dimensional static PD problem be−
∫
H (x,δ )

cω(‖ξξξ‖)ξξξ ⊗ξξξ

‖ξξξ‖2

(
u(x′)−u(x)

)
dAx′ = b(x), x ∈B,

u(x) = g(x), x ∈B \B,

(5.13a)

(5.13b)

where ξξξ = x′− x, ω is an influence function, and g is a given function providing displacement
boundary conditions. We choose the computational domain as a unit square: B = [0,1]× [0,1].
The solution u(x) to Problem (5.13) is sought in the inner domain B = (δ ,1−δ )× (δ ,1−δ ). An
illustration of the inner domain and the boundary layer B \B is given in Figure 5.4.

-�δ
B

B \B

Figure 5.4: Two-dimensional domain B composed of two non-overlapping subdomains: the inner
domain B and the boundary layer B \B.

We find the PD constant c using a connection between the PD equation (5.13a) and the Navier-
Cauchy equation of classical elasticity

−3
4

E
[

∇(∇ ·u)(x)+ 1
2

∇
2u(x)

]
= b(x), (5.14)

with Young’s modulus E and Poisson’s ratio ν = 1/3, assuming a quadratic displacement field, as

c =
6E
m

, (5.15)

where m is the weighted volume (cf. (5.18)) in 2D.
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We assume a two-dimensional static PD problem given by (5.13) with E = 1, δ = 0.04,
b = (−9

4 ,0), and g(x) = (x2,0) with x = (x,y). The value of b is found using the method of manu-
factured solutions, to ensure consistency with the imposed boundary conditions. We discretize the
problem with the discretization scheme (5.5).

We investigate the convergence of numerical solutions of Problem (5.13). We compare the
performance of the algorithm FA in combination with different influence functions with the algo-
rithms PA-PDLAMMPS, PA-HHB, and PA-AC, which denotes Partial Area - Analytical Calcula-
tion, that calculates partial areas analytically following [51]. The grid refinement is performed as in
the one-dimensional problem: we begin with an initial N×N square grid with N = 75 (δ/h = 3),
a total of 5,625 computational nodes, and gradually increase N by one until we reach N = 150
(δ/h = 6), a total of 22,500 computational nodes. The convergence results for different algo-
rithms and influence functions are presented in Figure 5.5 for (a) α = 0 and (b) α = 1, where the
error in the numerical solution is computed using an L2-norm.

We conclude that using the algorithms PA-HHB or PA-AC, or using the algorithm FA in com-
bination with a smooth influence function, improves the accuracy of the numerical solutions, for
most grid spacings, in comparison to utilizing the algorithms FA or PA-PDLAMMPS. The quality
of the convergence of the algorithm PA-PDLAMMPS is as poor as the one of the algorithm FA. As
opposed to the one-dimensional results, here a first-order convergence is achieved for both α = 0
and α = 1, when using the algorithm FA in combination with an influence function with P5(r)
(PWQ) or P7(r) (PWS). The convergence profile for the algorithm PA-AC is also oscillatory, but
better than the one of the algorithm PA-HHB, and much better than the ones of the algorithms FA
and PA-PDLAMMPS.
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Figure 5.5: Convergence of the numerical solution of Problem (5.13) using different algorithms for
approximation of partial areas and different influence functions. The notation PWL, PWC, PWQ,
and PWS refers, respectively, to the choice of influence function with polynomial P1(r), P3(r),
P5(r), and P7(r).
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5.5 A three-dimensional peridynamic problem

Let a PD model be given by a linearized linear peridynamic solid (LPS) constitutive model with
force state [62]

T[x, t]〈ξξξ 〉= 3K−5G
m

ω(‖ξξξ‖)θ lin(x, t)ξξξ +
15G
m

ω(‖ξξξ‖)ξξξ ⊗ξξξ

‖ξξξ‖2 (u(x+ξξξ , t)−u(x, t)), (5.16)

where the linearized nonlocal dilatation is given (in 3D) by

θ
lin(x, t) =

3
m

∫
H (0,δ )

ω(‖ζζζ‖)ζζζ · (u(x+ζζζ , t)−u(x, t))dVζζζ , (5.17)

and where ω is an influence function, K is the bulk modulus, G is the shear modulus, and m is the
weighted volume defined by

m :=
∫
H (0,δ )

ω(‖ξξξ‖)‖ξξξ‖2dVξξξ . (5.18)

Let a three-dimensional static PD problem be given by (cf. (5.1))

−
∫
H (x,δ )

3K−5G
m

ω(‖ξξξ‖)
[
θ

lin(x)+θ
lin(x′)

]
ξξξ

+
30G
m

ω(‖ξξξ‖)ξξξ ⊗ξξξ

‖ξξξ‖2 (u(x
′)−u(x))dVx′ = b(x), x ∈B,

u(x) = g(x), x ∈B \B,

(5.19a)

(5.19b)

where ξξξ = x′− x and g is a given function providing displacement boundary conditions. We
choose the computational domain as a unit cube: B = [0,1]× [0,1]× [0,1]. The solution u(x) to
Problem (5.19) is sought in the inner domain B = (2δ ,1−2δ )×(2δ ,1−2δ )×(2δ ,1−2δ ). Note
that, in this case, the boundary layer B \B is chosen of width 2δ . The reason for that is the need
to compute the linearized nonlocal dilatation (5.17) for each node in a layer of width δ around B.
An illustration of the inner domain and the boundary layer is given in Figure 5.6.

As opposed to the one- and two-dimensional problems, we do not employ here analytical cal-
culations for partial volumes but instead estimate those quantities numerically. The numerical ap-
proximation method utilizes a combined strategy of recursive subdivision and sampling. Although
the present study is restricted to uniform grids, the numerical method for computing partial vol-
umes has been generalized and successfully applied to arbitrary nonuniform grids with hexahedral
cells. As expected, the computational cost of approximating partial volumes in three dimensions
increases with the desired accuracy of the calculation. For the present study, it was found that six
levels of recursive subdivision and 64 sample points per subcube produced sufficiently accurate
partial volume approximations. This approach is equivalent to employing a pure sampling ap-
proach with (256)3 sample points per cubic cell. Further details about this methods can be found
in [56].
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B

B \B

Figure 5.6: Three-dimensional domain B (large gray cube). The domain is composed of two non-
overlapping subdomains: the inner domain B (small blue cube) and the boundary layer B \B.

(a) Ball-cube intersection. (b) Illustration of the partial volume algorithm.

Figure 5.7: Illustration of the algorithm for approximation of partial volumes. The algorithm
utilizes recursive subdivision (gray wireframe) and sampling (green points). A large value of the
mesh spacing, h, relative to the PD horizon, δ , is used here only to improve the clarity of the
illustration; in practice, cubic cells are small relative to the neighborhood of a given node.

As in previous sections, we use the method of manufactured solutions for the convergence
studies. However, in this case, we use a classical (local) equation to determine the appropriate
body force density to prescribe in the PD problem. This is possible, due to the Proposition 1
below, based on Lemma 1.

Lemma 1. For a quadratic displacement field, the linearized nonlocal dilatation (5.17) reduces to
the dilatation in classical elasticity, i.e.,

θ
lin(x) = ∇ ·u(x).

Proposition 1. Let a PD model be given by the linearized LPS force state (5.16). Then, for a
quadratic displacement field, the peridynamic equilibrium equation (5.4) reduces to the Navier-
Cauchy equation of classical elasticity.

The proofs of Lemma 1 and Proposition 1 use a direct substitution of a quadratic displacement
field and the symmetry of the integration range; more details can be found in [56].
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We assume a three-dimensional static PD problem given by (5.19) with K = 1, G = 0.5, δ =
0.04, b = (−10

3 ,0,0), and g(x) = (x2,0,0) with x = (x,y,z). The value of b is found using the
method of manufactured solutions, based on Proposition 1, to ensure consistency with the imposed
boundary conditions. We discretize the problem with the discretization scheme (5.5).

We investigate the convergence of numerical solutions of Problem (5.19). We compare the
performance of the algorithm FV in combination with different influence functions with the al-
gorithms PV-PDLAMMPS, PV-HHB, and PV-NC. The PV-NC algorithm, which denotes Partial
Volume - Numerical Calculation, utilizes the numerical approximation method for partial volumes
described above. The same grid refinement as in the one- and two-dimensional problems is used:
we begin with an initial N×N×N cubic grid with N = 75 (δ/h = 3), a total of 421,875 com-
putational nodes, and gradually increase N by one until we reach N = 150, a total of 3,375,000
computational nodes. The three-dimensional computational simulations were carried out using the
Peridigm code, developed at Sandia National Laboratories [46]. The use of a parallel code, exe-
cuted across multiple processors, was required due to the large computational expense associated
with nonlocal calculations as the grid spacing, h, is reduced relative to the PD horizon, δ . The
convergence results are presented in Figure 5.8 for (a) α = 0 and (b) α = 1, where the error in the
numerical solution is computed using an L2-norm.

We conclude that the algorithms PV-HHB and PV-NC, and the algorithm FV in combination
with a smooth influence function, improve the accuracy of numerical solutions, for most grid
spacings, relative to the algorithms FV and PV-PDLAMMPS. Of all the algorithms considered,
the algorithm FV in combination with an influence function with P3(r) (PWC), P5(r) (PWQ),
or P7(r) (PWS) yielded the best agreement with a first-order convergence for both values of α .
The algorithm PV-NC produced an oscillatory profile, especially for α = 0, which is smoother
and of lower amplitude, however, than the profile for the algorithm PV-HHB, and definitely than
the profiles for the algorithms FV and PV-PDLAMMPS. It should be mentioned, on the other
hand, that the algorithm PV-NC is significantly more computationally expensive than the other
algorithms.

5.6 Concluding remarks

We performed convergence studies of numerical solutions of static peridynamic problems. We ex-
plored two methods to reduce the discretization error in meshfree discretizations. The first method
attempts to accurately compute intersections between neighbor cells and the neighborhood of a
given node (referred to as partial volumes) and use those as quadrature weights. In standard mesh-
free discretizations of peridynamic models, partial volumes are taken as full nodal volumes. The
second method attempts instead to minimize the contribution to the internal force density of nodes
near the boundary of a given node, by incorporating smooth influence functions within peridy-
namic kernels. Our numerical results demonstrated that both methods improve the accuracy and
convergence of numerical solutions, in comparison to the current practice. In particular, we showed
that the oscillatory behavior of the convergence profile obtained in the current practice can be mit-
igated, and smoothed out, using accurate computations of partial volumes, and mostly eliminated,
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Figure 5.8: Convergence of the numerical solution of Problem (5.19) using different algorithms
for approximation of partial volumes and different influence functions. The notation PWL, PWC,
PWQ, and PWS refers, respectively, to the choice of influence function with polynomial P1(r),
P3(r), P5(r), and P7(r).

leading to a first-order convergence, when incorporating smooth influence functions. Extensions
of the current study to non-uniform grids is of the essence toward reliable general peridynamic
simulations.

Performing convergence studies of the type presented in this study is challenging, in particular
with respect to the proper choice of peridynamic horizon. We found that, especially in higher
dimensions, the peridynamic horizon cannot be so small as to make computations intractable, but
it cannot be too large either as to result in that the boundary layer, where displacement boundary
conditions are imposed, would represent the majority of the simulation domain. Under the current
constrains, we concluded that choosing δ = 0.04 and performing a grid refinement from Nneig = 3
to Nneig = 6 was a proper choice for the purpose of this study.
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Chapter 6

Ductile Failure Models for Peridynamics

6.1 Introduction

It has been known for several years that any material model from the classical (local) theory of solid
mechanics can be used directly within the peridynamic formulation [64, 73, 24]. The purpose of
the work described in this chapter is to adapt damage models from the local theory to peridynamics.
By doing so, we enable the numerical methods for local-to-nonlocal coupling described elsewhere
in this report to use consistent damage models as well as consistent material models in both the
local and the nonlocal regions.

Two types of local damage models are addressed in this work. The first is the continuum dam-
age mechanics (CDM) class of models, which soften the elastic response of a material according
to a predicted accumulation of damage. A comprehensive treatment of CDM may be found in the
book by Krajcinovic [30]. In the present study, it is shown that, by embedding it in the peridy-
namic theory, CDM can be used to nucleate and grow cracks, an extension of traditional damage
mechanics that was not previously possible.

The second type of damage model considered here is a ductile failure model, specifically the
Tearing Parameter Model (TPM) proposed by Wellman [74]. This model has achieved success
in predicting the failure of highly ductile metals in reasonably complex geometries and loading
conditions. Previous implementations of the TPM used it only to initiate failure, while relying
on supplemental techniques such as element death to propagate failure through the specimen. By
incorporating TPM within peridynamics, we demonstrate that TPM can be used to model the
growth as well as nucleation of failure in ductile metals, without these supplemental techniques.

6.2 Continuum damage mechanics

This section describes the use of continuum damage mechanics to determine the damage in peri-
dynamic bonds. This allows CDM to nucleate and grow cracks in a simulation. First, the relevant
aspects of peridynamics are reviewed, including the thermodynamic framework needed to apply
CDM concepts in a consistent way.
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6.2.1 Peridynamics review

The peridynamic theory [61, 65, 36] is an extension the classical theory of solid mechanics in
which the field equations can be applied directly to evolving surfaces of discontinuity, especially
cracks. In a peridynamic body B, the equation of motion is written

ρ(x)ÿ(x, t) =
∫
Hx

f(q,x, t) dVq +b(x, t) ∀x ∈B (6.1)

where ρ is the density, y is the deformation map, b is the external body force density field, and f is
a force density determined by the material model as described below. The equilibrium equation is∫

Hx
f(q,x) dVq +b(x) = 0 ∀x ∈B (6.2)

where Hx is a neighborhood of x called the family of x. The radius of this neighborhood is called
the horizon of the material, denoted by δ . The vector valued function f(q,x) represents the force
density (per unit volume squared) at x associated with the bond from x to each q∈Hx. The values
of f(·,x) are determined by the material model as a function of the deformation of Hx.

In determining the force in each bond in a family, the bonds do not necessarily respond inde-
pendently of each other, although such springlike material models are an important special case
called bond-based material models. In general, the force density in each bond connected to x
depends collectively on deformation of all the bonds connected to it. This more general case is
represented mathematically by state-based material models. An example of a state-based model is
a fluid, in which the force density in each bond connected to x depends only on the volume change
of Hx.

To write down a state-based material model, it is helpful to use mathematical objects called
states, which are simply mappings from the bonds in a family to some other quantity. The value of
a state A at x operating on the bond q−x is written as

A[x]〈q−x〉.

Quantities in angle brackets are bonds; quantities in square brackets are the location of the family
on whose bonds A[x] operates. If a state is scalar valued, it is called a scalar state, denoted A. If it
is vector valued, it is called a vector state, denoted A.

Let y denote the deformation of B. For any bond ξξξ ∈Hx, let

Y[x]〈q−x〉= y(q)−y(x).

Y is called the deformation state. The deformation state is the basic kinematical quantity for
purposes of material modeling and in this role is analogous to the deformation gradient F = ∂y/∂x
in the standard theory.

The pairwise force density f(q,x) depends on both the deformations of Hx and Hq through
the force states T[x] and T[q]:

f(q,x) = T[x]〈q−x〉−T[q]〈x−q〉. (6.3)
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From this expression it is immediate that f possesses the following antisymmetry:

f(x,q) =−f(q,x).

From this antisymmetry it is easily shown that a bounded peridynamic body has zero rate of change
of total linear momentum in the absence of body forces.

States on a family H have a scalar product called the dot product defined by

A•B =
∫
H

A〈ξξξ 〉B〈ξξξ 〉 dVξξξ , A•B =
∫
H

A〈ξξξ 〉 ·B〈ξξξ 〉 dVξξξ

for scalar states and vector states, respectively. Here, the small dot · denotes the usual scalar
product of two vectors, a ·b = aibi. The norm of two states is defined by

‖A‖=
√

A•A, ‖A‖=
√

A•A.

The point product of two scalar states is a scalar state defined by

(AB)〈ξξξ 〉= A〈ξξξ 〉B〈ξξξ 〉 ∀ξξξ ∈H .

Let Ψ(A) be a scalar valued function of a state A. Suppose that for a given A, there is a state ΨA(A)
such that for any differential state dA,

Ψ(A+dA)−Ψ(A) = ΨA(A)•dA.

Then ΨA(A) is called the Fréchet derivative of Ψ at A. The same definition applies to functions of
a vector state:

Ψ(A+dA)−Ψ(A) = ΨA(A)•dA.

Fréchet derivatives have many properties similar to ordinary and partial derivatives. For example,
if A(B) is a state valued function, the following chain rule applies:

ΨB = ΨA •AB,

which means
ΨB〈ξξξ 〉=

∫
H

ΨA〈ζζζ 〉AB〈ζζζ ,ξξξ 〉 dVζζζ .

Here, the Fréchet derivative AB is an example of a double state, that is, a state that is a function of
two bonds. Double states have the property that

dA〈ζζζ 〉=
∫
H

AB〈ζζζ ,ξξξ 〉dB〈ξξξ 〉 dVξξξ .

The unit state 1 is defined by
1〈ξξξ 〉= 1 ∀ξξξ ∈H .

Note that 1•1 =V , where V is the volume of H . The identity double state ∆ is defined by

∆〈ζζζ ,ξξξ 〉= ∆(ξξξ −ζζζ )

where ∆ is the Dirac delta function on R3, that is,

(A•∆)〈ξξξ 〉=
∫
H

A〈ζζζ 〉∆〈ζζζ ,ξξξ 〉 dVζζζ = A〈ξξξ 〉

for any state A.
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6.2.2 Thermodynamic form of peridynamics

The peridynamic statement of the first law of thermodynamics at a point x ∈H is given by

ε̇ = T• Ẏ+ r+h (6.4)

where ε is the internal energy density, r is the energy source rate (per unit volume), and h is the
rate of energy transport to the point x [65]. Although a local model of heat conduction can be used
to determine h, (6.4) is also compatible with nonlocal heat transport laws [10, 11, 42].

The appropriate statement of the second law is given by

θη̇ ≥ r+h (6.5)

where θ is the absolute temperature and η is the entropy density. The free energy is defined by

ψ = ε−θη (6.6)

As described in [65], combining (6.4), (6.5), and (6.6) leads to

T• Ẏ− θ̇η− ψ̇ ≥ 0. (6.7)

Suppose the material model for free energy density depends only on the deformation state and
temperature:

ψ(Y,θ). (6.8)

From (6.7) and (6.8), reasoning similar to Coleman and Noll [16] leads to the conclusion that the
force state and the entropy are related to the free energy density through

T = ψY, η = ψθ . (6.9)

(The first equation is a Fréchet derivative; the second is a partial derivative.) Thus, in the absence
dependence on history, rate, or other variables, a material model may be expressed completely in
the form of a free energy function.

Damage may be included within the thermodynamic framework by introducing the damage
state φ . This is a scalar state such that

φ〈ξξξ 〉 ≥ 0, φ̇〈ξξξ 〉 ≥ 0 ∀ξξξ ∈H . (6.10)

By convention φ = 0 corresponds to undamaged material. It is often convenient, but not essential,
to assume that φ = 1 corresponds to “fully damaged” material. As shown in [65], Coleman-Noll
type reasoning for a material model in which the free energy density depends explicitly on the
damage state,

ψ(Y,θ ,φ), (6.11)

leads to the restriction on the material model

ψφ 〈ξξξ 〉 ≤ 0 ∀ξξξ ∈H (6.12)

as well as the entropy generation rate and dissipation inequality given by

η̇ =
ψ̇d

θ
, ψ̇

d =−ψφ • φ̇ (6.13)

where ψ̇d is the rate of energy dissipation due to damage progression.
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6.2.3 Ordinary mechanical material model

In the previous section it was shown how the damage state, when incorporated into a material
model through the dependence of free energy on it, interacts with the other thermodynamic vari-
ables. These interactions result in the restriction on the material model (6.12) as a result of the
second law of thermodynamics. Having established these relationships, we are now free to assume
a particular thermodynamic path that all deformations follow a given thermodynamic path, such
as isothermal. In this case it is not necessary to explicitly retain dependence of ψ on temperature,
because this is uniquely determined by the deformation. By convention, under this assumption, the
free energy is then renamed the strain energy density is denoted by W (Y,φ).

For purposes of investigating continuum damage mechanics, it will further be assumed that the
dependence of W on Y is exclusively through changes in length of the bonds, not their rotation. In
this case we write

W (e,φ)

where e is the scalar valued extension state defined by

e〈ξξξ 〉= |Y〈ξξξ 〉|− |ξξξ | ∀ξξξ ∈H . (6.14)

Evaluation of the necessary Fréchet derivative shows that the bond force vectors are always parallel
to the direction of the deformed bonds:

T〈ξξξ 〉= t〈ξξξ 〉M〈ξξξ 〉, M〈ξξξ 〉= Y〈ξξξ 〉
|Y〈ξξξ 〉|

where t is the scalar force state,
t =We. (6.15)

The thermodynamic force state is defined by

z =−Wφ . (6.16)

The value of z〈ξξξ 〉 for any bond ξξξ represents the rate of decrease of strain energy density at x as the
bond damage increases. In this sense it represents a driving force for damage in the bond, although
not a mechanical force. However, in general, there is no compelling reason to assume that bonds
with the greatest value of z〈ξξξ 〉 accumulate damage it the highest rate, although this is plausible.

In keeping with the assumption that is usually made in thermodynamic treatments of continuum
damage mechanics, it will be assumed for present purposes that there exists a function

S(z,φ)

such that damage does not increase in any of the bonds whenever conditions at x are such that
S < 0. Damage can increase when S = 0. However, it evolves in such a way that at all times S≤ 0,
a requirement called the consistency condition.
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Also in keeping with traditional treatments of damage mechanics, it will be assumed that if
S = 0, the damage state changes in response to an incremental change in the extension state de
such that for some small non-negative scalar dλ ,

dφ = Sφ dλ (6.17)

This assumption together with monotonicity requirement stated in the second of (6.10) implies the
following condition on S:

Sφ 〈ξξξ 〉 ≥ 0 ∀ξξξ ∈H

which, geometrically, is a type of convexity condition on the surface S = 0 which resides in the
infinite-dimensional space of scalar states.

The next question is how to compute the change in damage state resulting from a given incre-
mental deformation of a family resulting in de. In view of (6.17), this task is the same as computing
dλ . To do this, the consistency condition is applied to the total differential of S(z,φ):

0 = dS = Sz •dz+Sφ •dφ .

Using (6.17), this implies
0 = Sz •dz+Sφ •Sφ dλ . (6.18)

Recalling (6.16) and the material model W (e,φ) leads to the following expression for the total
differential of the thermodynamic force state:

dz =−Wφe •de−Wφφ •dφ =−Wφe •de−Wφφ •Sφ dλ .

in which the second Fréchet derivatives Wφe and Wφφ are double states. Using this last expression
in (6.18) to eliminate z and solving for dλ yields

dλ =
Sz •Wφe •de

Sz •Sφ −Sz •Wφφ •Sz
,

hence, from (6.17),

dφ = Sz
Sz •Wφe •de

Sz •Sφ −Sz •Wφφ •Sz
. (6.19)

This equation provides the increment of the damage state in response to any incremental deforma-
tion such that S = 0 and the normality condition holds.

6.2.4 CDM with a bond-based material model

In this section, a bond-based, microelastic material is modified to include damage. The assumed
strain energy density function is as follows:

W (e,φ) =
∫
H

w(e〈ξξξ 〉)(1−φ〈ξξξ 〉) dVξξξ = w• (1−φ) (6.20)
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where w is the micropotential of an undamaged bond and the scalar state w is defined by

w〈ξξξ 〉= w(e〈ξξξ 〉)

for all ξξξ ∈H . The assumed form of w implies that the micropotential is necessarily isotropic in
the absence of damage. Evaluating the Fréchet derivatives indicated in (6.15) and (6.16) leads to

t = (1−φ)w′, z = w (6.21)

where w′ is the first derivative of w, that is, the bond force density. The following double states are
found directly from the second Fréchet derivatives of (6.20):

Wφe = w′∆, Wφφ = 0. (6.22)

Let the failure surface be given by

S(z,φ) = µ • z−κ(1+ηD), D = τ •φ . (6.23)

where κ and η are constants and µ and τ are given scalar states normalized such that

µ •1 = τ •1 = 1.

The scalar D can be thought of as a scalar damage variable derived from the damage state φ . The
choices

µ〈ξξξ 〉= τ〈ξξξ 〉= 1/V (6.24)

for all ξξξ , where V is the volume of H , result in isotropic response. From (6.21) and (6.23), the
condition S = 0 for damage growth implies that damage can increase only when the deformation
is large enough that

τ •w = κ(1+ηD).

From this expression, it can be observed that η represents a “hardening” coefficient for damage.
(This term does not literally result in material hardening because w is the undamaged microp-
otential.) From the form of left side of this last equation, evidently damage can increase when
the weighted average of the undamaged micropotentials among the bonds in a family exceed a
threshhold that depends on the scalar damage.

From (6.23), the following Fréchet derivatives used in the normality condition are found:

Sz = µ, Sφ =−κητ. (6.25)

From (6.19), using (6.21), (6.22), and (6.25), the damage state increment in response to an incre-
ment in the extension state de is given by

dφ =


(w′τ)•de
κη τ •µ

µ if S = 0,

0 if S < 0.
(6.26)

The denominator in this expression does not depend on the deformation. The numerator can be
thought of as the increment in work done by the bond extensions acting against the undamaged
bond force densities. Another observation is that the damage state increment is always parallel (in
the sense of states) to µ . Therefore, damage would tend to grow preferentially in bonds with larger
values of µ , allowing planes of weakness to be included in a material model for damage.
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6.2.5 CDM example

The development up to this point has shown how CDM, a tool from the local theory, can be used to
damage and ultimately break nonlocal bonds. In this section, it is demonstrated by a computational
example that this approach allows CDM to predict the nucleation and growth of discrete cracks.

A brittle plate with dimensions 50mm× 150mm× 5mm contains a hole with diameter 20mm.
The Young’s modulus is E=140GPa, the Poisson ratio is ν=0.25, and the density is 8000kg-m−3.
The peridynamic CDM model used in this example is as given in (6.23) and (6.24), with parameters

η = 10, κ =
Eε2

0
3V

, ε0 = 0.01

where V is the volume of the family. The Emu grid had a nominal spacing of 1.0mm and used
about 38,000 nodes. A strain rate of 45s−1 is initialized in the grid with constant velocity boundary
conditions at the ends.

Figure 6.1 shows the predicted progression of damage after nucleation at the sites of the stress
concentrations. A key feature of the results are the gradual accumulation of damage at these sites,
followed by a sudden transition to unstable dynamic fracture, as shown in Figure 6.2. This general
pattern of an abrupt transition from stable to unstable crack growth is often observed experimen-
tally in materials such as composites. This pattern is not reproduced by peridynamics with a sim-
ple bond strain criterion for bond failure with isotropic materials, without CDM. To illustrate this,
the figure compares the damage growth using CDM and the prototype microelastic brittle (PMB)
model [63], which uses a simple bond breakage criterion. With the PMB model, there is no stable
phase of damage growth, and dynamic fracture occurs almost immediately after the nucleation of
damage.

6.2.6 Using a classical CDM model

Suppose that a classical material model (that is, from the local theory) is provided together with
an appropriate failure surface within the traditional thermodynamic CDM framework. We want to
use this CDM model directly in peridynamics to break bonds according to the method described
above. The strain energy density function and failure surface have the following forms:

Wlocal(F,D), Slocal(Z,D)

where F = ∂y/∂x is the deformation gradient tensor, D is the scalar damage variable, and Z is the
(scalar) thermodynamic force, defined by

Z =−∂Wlocal

∂D
. (6.27)

D is assumed to be related to the damage state by

D = τ •φ (6.28)
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Damage 

Figure 6.1: Damage accumulation followed by dynamic fracture using CDM. Left: contours of the
stable damage when the nominal strain is 0.0057. Right: contours of displacement showing the
fully formed cracks when the nominal strain is 0.009.
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Figure 6.2: Position of the damaged region as a function of nominal strain in the CDM example
problem, using both the CDM and PMB peridynamic damage models.
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where τ is a prescibed scalar state normalized such that τ •1 = 1.

To use this model in peridynamics, it may be treated as a correspondence material [64]. Define
the peridynamic strain energy density function by

W (Y,φ) =Wlocal(F,D), S(z,φ) = Slocal(Z,D) (6.29)

where F is the approximate deformation gradient tensor, given by

F =

(∫
H

ω〈ξξξ 〉Y〈ξξξ 〉⊗ξξξ dVξξξ

)
K−1, K =

∫
H

ω〈ξξξ 〉ξξξ ⊗ξξξ dVξξξ , (6.30)

where ω is a non-negative valued influence function. From (6.16), (6.27), (6.28), and the chain
rule for Fréchet derivatives,

z =−Wφ =−∂Wlocal

∂D
Dφ = Zτ.

Taking the dot product of both sides of this equation with 1 yields

Z = z•1. (6.31)

As derived in [64], the force state associated with this correspondence model is given by

T〈ξξξ 〉=WY〈ξξξ 〉= ω〈ξξξ 〉σσσK−1
ξξξ (6.32)

for all ξξξ ∈H , where σσσ is the Piola stress tensor given by

σσσ(F,D) =
∂Wlocal

∂F
(F,D).

In summary, the peridynamic implementation of the classical material model is accomplished
by the definitions in (6.29) with D, F, and Z given by (6.28), (6.30), and (6.31) respectively. The
force state is given by (6.32), which includes the effect of damage through the stress tensor.

6.3 Implementation of a ductile failure model

The preceding discussion concerned a thermodynamically consistent framework in which to model
the accumulated effect of material damage on bond forces, under the assumption that damage is
the only history-dependent variable. While this concept could be extended to include plasticity, it
is worthwhile to investigate a simpler phenomenological approach to the prediction of failure in
ductile metals.

In brittle materials, the salient feature of fracture in most cases is the constant rate of energy
consumption per unit area of crack growth, an approximation proposed by Griffith and confirmed
by extensive experimentation. In the Griffith concept of a brittle crack, a crack grows when there
is sufficient energy available from boundary loading and stored energy in the body to supply the

67



critical energy release rate. The peridynamic theory reproduces this constant rate of energy con-
sumption using the simplest damage model: bond breakage at a critical prescribed bond strain.
This critical bond strain can be related by a simple formula to the critical energy release rate [63]
and varies with the horizon.

However, the critical strain approach to peridynamic bond damage is not effective in modeling
ductile failure, mainly because it fails to account for the strong effect of triaxiality. This creates a
need for a workable approach to modeling ductile failure that is compatible with peridynamics and
with the local theory, as a tool in local-to-nonlocal coupling.

To fulfill this need, a ductile failure model called the Tearing Parameter Model [74] (TPM)
was adapted to peridynamics in the present work. The TPM is attractive because it encompasses
the main experimentally observed effect, the cumulative effect of tensile hydrostatic stress as shear
deformation progresses, in a simple form. The following discussion mainly concerns the practical,
rather than theoretical, aspects of implementing the TPM in the most commonly used discretization
technique for peridynamics.

In the TPM (as implemented in the local theory), a scalar P call the tearing parameter is
computed from the following relation:

P =
∫ t

0

(
max

{
0,

2σ1

3(σ1− σ̄)

})4

ε̇p dt ′ (6.33)

where εp is the equivalent plastic strain, σ1 is the largest (most tensile) of the three principal
stresses, and σ̄ = Trace σσσ/3 is the hydrostatic stress. Failure occurs with P reaches a critical value
Pc.

In a uniaxial tensile test with applied stress σ0 > 0, one finds that σ1 = σ0 and σ̄ = σ0/3;
therefore Pc equals the equivalent plastic strain at failure. This test therefore provides the only
required material parameter for the TPM.

Post-failure response is not addressed by the TPM. In a typical finite element implementation,
post-failure response is modeled with the help of element death. In the peridynamic implemen-
tation, because of its inherent compatibility with discontinuities, we hope to avoid the need for
element death and similar strategies.

Since peridynamics is a nonlocal theory, implementation of the TPM requires the identifica-
tion of the variables σ1, σ̄ , and εp. These quantities are provided as part of the correspondence
models for plasticity in peridynamics [73, 24]. The correspondence approach to peridynamic ma-
terial modeling uses a local model directly, with intermediate quantities derived from the family
of a point. The basic relations are given in (6.30) and (6.32). Correspondence material models
using a particle discretization [63] tend to exhibit zero energy modes of deformation which require
corrective forces to suppress them [34, 14].

In applying the TPM in this particle discretization, it is helpful to associate a value of P with
the bond connecting x to x′:

P(x,x′) = (P(x)+P(x′))/2.

68



The bond ξξξ breaks irreversibly when this value of P for the bond exceeds the critical value for the
material:

P(x,x′)≥ Pc =⇒ φ [x]〈x′−x〉= 1.

Because of the power 4 in the integrand in (6.33), experience with numerical implementation
has shown that P can be very sensitive to discretization errors and inevitable oscillations. To
help reduce this sensitivity, it is helpful to perform the time integration in (6.33) using averaged
quantities for the integrand. Define

Q(x) =
1
V

∫
H

S(x′)
2σ1(x′)

3(σ1(x′)− σ̄(x′))
dVx′, R(x) =

1
V

∫
H

ε̇p(x′) dVx′

where V is the volume of H and S(x′) is a surface factor defined below. Then

P(x) =
∫ t

0
Q(x)R(x)dt ′.

In practice, it is important that the Q and R variables be averaged separately, rather than combined
into one averaged variable.

The form of the integrand in (6.33) also tends to result in excessive sensitivity of P to irregu-
laties on the surface of a grid. To help reduce this sensitivity, a surface factor S is introduced that
modifies the integrand. S(x) is defined to by

S(x) =
Vm(x)
V (x)

where V (x) is the volume of H , and Vm(x) is the volume of H that is occupied by the ductile
material (not void).

In the particle discretization, zero energy modes create difficulties when modeling ductile ma-
terial response because of the long time scales that are typically involved in simulating laboratory
tests, and because of the use of correspondence material models. A number of techniques for
controlling zero energy modes are helpful in this application. Among these are the following.

• A method due to Littlewood [34] applies forces to material particles that tend to make each
family deform in a way that closely approximates a homogeneous deformation with defor-
mation gradient F, where F is found from (6.30). In the present study, these forces are
computed from

TL〈x′−x〉= βLC
(
|F(x′−x)|− |Y〈x′−x〉|

)
M

where βL is a constant on the order of 0.02, Y is the deformation state, M is the deformed
bond direction vector, and C is an equivalent micromodulus:

M =
Y〈x′−x〉
|Y〈x′−x〉|

, C =
18k
πδ 5 .
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The force state from the material model T̂ is modified by

T = T̂(Y)+TL.

This modified force state is used in (6.3).

• The main limitation of using TL by itself as a method for controlling zero energy modes is
that it does not resist rotations of bonds. Therefore, it is helpful to add an additional “drag”
term to the equation of motion that tends to smooth out variations in velocity within each
family. To do this, define the weighted internal force density at x by

L f (x) =
∫
Hx

L(x′)(1−φ〈x′−x〉) dVx′∫
Hx

(1−φ〈x′−x〉) dVx′

where L is the internal force density field determined from the material model, as it appears
in (6.1):

L0(x′) =
∫
Hx′

f(q,x′) dVq.

The internal force density at x is modified according to

L(x) = (1−βD)L0(x)+βDL f (x)

where βD is a constant on the order of 0.005. The modified equation of motion, omitting
time from the notation, is then written as

ρ(x)ÿ(x) = L(x)+b(x).

Because broken bonds are not included in L f , the drag forces do not suppress the formation
of cracks.

Littlewood’s method and drag forces, when used together, are effective in controlling zero energy
modes in typical ductile failure simulations using the TPM in peridynamics when using the particle
discretization.

Damage affects correspondence materials in peridynamics in two ways:

• The influence function ω that appears in (6.30) is assumed to vanish for broken bonds:

ω = (1−φ)ω0

where ω0 is an influence function independent of the damage state. Since ω appears in
(6.32), it follows that

φ〈ξξξ 〉= 1 =⇒ T〈ξξξ 〉= 0.
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• It is assumed that the underlying correspondence material model incorporates stress reduc-
tion due to damage. One way of including damage is by setting

σσσ(F,D) = (1−D)σσσ0(F)

where D is given by (6.28) and σ0(F) is the stress tensor computed by the local material
model, without damage. Such a reduction in stress is essential in correspondence material
models, because without it, the breakage of a bond would have the undesired effect of in-
creasing the force densities in other bonds (because ω appears in the expressions for both F
and K in (6.30)).

6.3.1 Ductile failure example

The TPM was applied to modeling the failure of a notched tensile specimen with 6061-T6 alu-
minum alloy. The specimen has an outer diameter of 22mm and a semicircular notch radius of
5mm. The Emu discretization has a nominal grid spacing of 0.3mm with a total of about 344,000
nodes. The Johnson-Cook plasticity model is used with the material parameters shown in Table 6.1.
The value of E is scaled down from the physically correct value of 70GPa to allow a larger time
step to be used. A velocity gradient of 200s−1 is initialized in the numerical grid with constant
velocity boundary conditions at the ends.

The simulation results are shown in Figure 6.3. Because the notch results in high tensile pres-
sures near the central axis, the TPM correctly predicts the nucleation of damage near the center.
After the nucleation of damage, these strongly tensile pressures no longer exist, and further pro-
gression of the crack to the free surface involves larger plastic strains. The net effect of this tran-
sition in failure mechanism is to form a cup-like failure surface, reminiscent of the cup-and-cone
features often seen in ductile failure of rods in tension. The figure also shows that for three values
of discretization spacing, the method predicts about the same load at failure.

Parameter Value Units
Young’s modulus, E 15 GPa
Poisson ratio, ν 0.333
Johnson-Cook A 324 MPa
Johnson-Cook B 114 MPa
Johnson-Cook n 0.42
Johnson-Cook C 0
Johnson-Cook m 1.34
Tearing parameter Pc 1.57

Table 6.1: Material properties used for 6061-T6 Al with the Johnson-Cook plasiticity and tearing
parameter ductile failure models.

In summary, the implementation of CDM and the TPM within peridynamics allows damage
modeling to be performed consistently between local and nonlocal regions within a body. The
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adaptation of these techniques to degrade and break peridynamic bonds is the primary research
contribution of this portion of the LDRD project.
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Chapter 7

Software Implementation of Local-Nonlocal
Coupling

7.1 Introduction

A primary motivation for the coupling strategies and extensions to peridynamic theory developed
in this project was the advancement of peridynamics as an engineering analysis tool. The ability to
couple nonlocal peridynamic models and classical local models enables peridynamics to be inte-
grated directly within existing analyst workflows. This approach leverages the large investment in
existing analysis codes, mitigates the computational expense of nonlocal models, and can reduce
or eliminate difficulties associated with the application of boundary conditions to nonlocal mod-
els [2, 32, 43]. To be effective in these respects, strategies for coupling local and nonlocal models
must themselves be computationally efficient and amenable to implementation in mainstream anal-
ysis codes.

This chapter summarizes the implementation of the partial-stress approach for local-nonlocal
coupling within the Peridigm [46, 48] peridynamics code and the Albany [50] computational me-
chanics code, which is based on the classical (local) theory. Implementation of the partial-stress
approach within a pure peridynamics code is presented first, followed by a discussion of coupling
independent codes for the integration of local and nonlocal models within a single executable. The
software engineering follows an agile components strategy and utilizes numerous packages from
the Trilinos [25, 26, 70] software project to enable efficient, massively parallel computational sim-
ulations. Local-nonlocal coupling is demonstrated though a set of test cases designed to verify
the effectiveness of the partial-stress approach for the solution of boundary-value problems with
known solutions.

7.2 Implementation of Partial Stress Models in Peridigm

Initial implementation of the partial-stress formulation was carried out in the Peridigm peridy-
namics code. This required modifications to the constitutive models, and the implementation of
a divergence operator. Modifications to the constitutive models enabled calculation of the partial
stress, defined in Equation (2.19), in addition to the standard peridynamic force state. Implemen-
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tation of a divergence operator was required for evaluation of the partial internal force density,
given by Equation (2.20). Note that while the divergence operator is a standard component of
finite-element codes, it was not previously implemented in Peridigm because peridynamic models
operate directly on displacements and forces, as opposed to the stress-strain relations utilized in
mainstream finite-element codes.

To illustrate the process of extending a peridynamic constitutive model for calculation of partial
stress, the internal force routine for the linear peridynamic solid material model is presented in
Algorithm 1 [64, 32]. Here, f denotes force density, θ represents dilatation, x denotes position in
the undeformed configuration, u denotes displacement, ξ is an undeformed bond, η is a change in
bond length, δ is the peridynamic horizon, ω is the influence function, e denotes extension state, m
denotes weighted volume, ∆V is the volume associated with a material point, ed denotes deviatoric
extension state, k and µ are the bulk and shear moduli, respectively, t is the force state, M is the
vector connecting two material points in the deformed configuration, and νννps is the partial stress.
The extensions to the constitutive model, highlighted in red, are straightforward and results in very
little increase in computational expense.

An implementation of the divergence operator is required for calculation of nodal forces based
on the partial stress. Following Equation (2.20), the partial internal force density is found as

L(x) = ∇ ·ν (x) = Tr
(

∇ν (x)
)
.

For the meshfree discretization of Silling and Askari [63], the partial internal force density may be
computed using an approach similar to that of the correspondence model formulation given in [64],

∇ ·ν (x) = Tr

( (
N

∑
n=1

ω 〈ξ n〉{ν (xn)−ν (x)}⊗ξ
n

∆V n

)
K−1

)
,

where N is the number of neighbors for the material point at x and K is the shape tensor,

K =
N

∑
i=0

ω i xi⊗xi ∆Vxi.

The Peridigm implementation of the partial stress was verified using test cases in which a
rectangular bar with a varying horizon is subjected to a prescribed displacement field. The value
of the horizon over the length of the bar is illustrated in Figure 7.1. The horizon is large over the
central region of the bar, and is reduced to a smaller value near the ends of the bar. The small
horizon value near the ends of the bar facilitates coupling to a local model, whereas the large
horizon value applied elsewhere allows for the modeling of nonlocal effects. Tests were carried
out using both the standard peridynamic constitutive model formulation, and the partial stress
formulation. The test simulations utilized an elastic correspondence material model [64] with a
Young’s modulus of 200.0GPa and a Poisson’s ratio of zero.

Figure 7.2 presents results for a prescribed linear displacement field. As shown in Figure 7.2a,
the conventional peridynamic model produces so-called ghost forces in the region of the model
over which the horizon is varying. The partial stress solution, shown in Figure 7.2b, produces the
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Algorithm 1 Routine for calculation of the internal force density for a linear peridynamic solid
material with a Gaussian influence function.

1: procedure LINEAR PERIDYNAMIC SOLID INTERNAL FORCE

2: . Initialize global force density vector to zero
3: for each node i do
4: fi← 0
5: νννps

i← 0
6: end for
7: . Compute the dilatation for each node
8: for each node i do
9: θi← 0

10: for each node j in neighbor list for node i do
11: ξ ← x j−xi
12: η ← u j−ui

13: ω ← exp
(
− |ξ |

2

δ 2

)
14: e← |ξ +η |− |ξ |
15: θi← θi +

3
mi

ω |ξ | e ∆Vj
16: end for
17: end for
18: . Compute pairwise contribution to global force density vector
19: for each node i do
20: for each node j in neighbor list for node i do
21: ξ ← x j−xi
22: η ← u j−ui

23: ω ← exp
(
− |ξ |

2

δ 2

)
24: e← |ξ +η |− |ξ |
25: ed ← e− θi |ξ |

3
26: t← 3

mi
k θi ω |ξ |+ 15µ

mi
ω ed

27: M← ξ+η

|ξ+η |
28: fi← fi + t M ∆Vj
29: f j← f j− t M ∆Vi
30: . Compute pairwise contribution to the partial stress
31: νννps

i← νννps
i +(t⊗ξ )∆Vj

32: end for
33: end for
34: end procedure
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Figure 7.1: Configuration for test simulations using a variable horizon.

-150

 0

 150

-3 -2 -1  0  1  2  3

A
cc

el
er

at
io

n 
(k

m
/s

2 )

Location (m)

(a) Standard peridynamic model.

-150

 0

 150

-3 -2 -1  0  1  2  3

A
cc

el
er

at
io

n 
(k

m
/s

2 )

Location (m)

(b) Peridynamic partial stress model.

Figure 7.2: Acceleration values along the length of the bar under an imposed linear displacement
field.

expected result of zero acceleration over the bar. Results are similar for the test case involving a
prescribed quadratic displacement field, shown in Figure 7.3; the standard peridynamic formula-
tion yields ghost forces, while the partial stress formulation yields the expected constant acceler-
ation. For clarity, nodes near the ends of the bar, which experience nonzero reaction forces, are
omitted from Figures 7.2 and 7.3.

The use of a smaller horizon value near the ends of the bar affects computational expense by
reducing the total number of bonds in the model. The test case illustrated in Figure 7.1 contains
46.5 million bonds. In the case in which a constant horizon value of 0.25 is applied over the entirety
of the domain, the total number of bonds increases to 92.6 million, resulting in a significant increase
in computational cost for evaluation of the internal force density. For solutions employing implicit
time integration, the reduction in the number of bonds also decreases the computational expense
of solving the global linear system, if applicable.

An additional effect on computational expense pertains to the maximum stable time step for
explicit transient dynamic simulations [33, 32]. The maximum stable time step was found to be
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(b) Peridynamic partial stress model.

Figure 7.3: Acceleration values along the length of the bar under an imposed quadratic displace-
ment field.

2.03e-5s for the constant-horizon case, and 7.15e-6s for the varying-horizon case. Thus the use
of a smaller horizon near the ends of the bar decreases the cost of an internal force evaluation,
but may reduce the maximum stable time step, resulting in an increase in the total number of time
steps required to complete a simulation. It is often the case, however, that for simulations involving
both local and nonlocal models, the maximum stable time step is determined by the local model.
In this case, the maximum stable time step associated with the nonlocal model has no effect on
computational expense.

7.3 Coupling Peridigm and Albany

The partial-stress approach was applied to directly couple a meshfree peridynamic model and a
standard (local) finite-element model though integration of the Peridigm and Albany codes. The
goal was to enable simulations in which a meshfree peridynamic model is applied only in regions
susceptible to material failure. Connection to the remainder of the domain, modeled using a stan-
dard local model, is achieved using a transition region in which a peridynamic partial stress model
is applied. This configuration, illustrated in Figure 7.7, allows for reduction of the peridynamic
horizon, and hence the degree of nonlocality, from a relatively large value in the meshfree peridy-
namic domain, to a small value at the interface to the standard local model.

The software design for coupling the Peridigm and Albany codes is illustrated in Figure 7.4.
The required Peridigm components were compiled as a library and linked directly into Albany,
creating a single, unified executable. Under this approach, Albany acts as the primary driver of the
simulation. An preliminary call to the Peridigm library is made at the onset of the simulation to
initialize the meshfree discretization and execute the proximity search required for identification
of peridynamic bonds. Subsequent calls to Peridigm are made for evaluation of the internal force.
For meshfree peridynamic domains, Peridigm computes nodal forces directly. For peridynamic
partial stress domains, Peridigm computes a stress tensor at peridynamic material points that serve
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Figure 7.4: Schematic illustration of the software interfaces between the Peridigm and Albany
codes. Software development completed specifically for the coupling effort is highlighted in or-
ange.

as integration points in the Albany discretization. This approach allows for a straightforward tran-
sition from a peridynamic partial stress domain to a domain modeled with classical continuum
mechanics. Transitions from meshfree peridynamic domains to partial stress domains discretized
with standard finite elements requires special treatment, as described below.

Calculation of nodal forces for meshfree peridynamic simulations carried out within the cou-
pled Albany-Peridigm framework is handled entirely by the Peridigm library. At the onset of each
time step, Albany sends to the Peridigm library the current nodal displacements and velocities, as
determined by the time integration routine. Based on this kinematic information, the Peridigm
library computes nodal forces via the specified peridynamic constitutive model, optional peridy-
namic damage model, and optional peridynamic contact model. The nodal forces are passed back
to Albany and applied within the time integrator to advance the simulation to the next time step.

Calculation of nodal forces for peridynamic partial stress domains discretized with standard
finite elements is achieved using a combination of Albany and Peridigm routines. As illustrated
in Figures 7.5 and 7.6, the peridynamic material points are situated at the locations of Gauss in-
tegration points over a set of elements which are managed by Albany. At the onset of each time
step, element-level interpolation routines are called within Albany to compute displacements and
velocities at the peridynamic material points. This data is then sent to the Peridigm library, which
computes the peridynamic partial stress. The partial stress values are then treated by Albany fol-
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(a) Element configuration containing (local) classical continuum mechanics, shown in gray, and (nonlocal)
peridynamic partial stress, shown in blue.

(b) Illustration of peridynamic material points positioned within the partial-stress elements.

Figure 7.5: Configuration utilizing both classical continuum mechanics and peridynamic partial
stress.

lowing the standard finite-element procedure: the element-level divergence operator is applied
over the integration points (peridynamic material points) to compute contributions to the nodal
forces. Following this approach, the peridynamic partial stress material points are not co-located
with nodes in the Albany discretization, and peridynamic bonds pass across multiple elements, as
shown in Figure 7.6.

One difficulty with the Albany-Peridigm coupling approach described above is treatment of
the element surface directly adjacent to the meshfree discretization. Here, the Albany elements
produce nodal forces that are not balanced by the meshfree model, which acts only on peridynamic
material points. In effect, surfaces adjacent to the meshfree domains are treated, by default, as free
surfaces. To resolve this issue, a constraint may be imposed on the nodes located on the affected
element surfaces to fully prescribe their displacement as a function of the displacements of nodes
and peridynamic material points in their vicinity. Specifically, a quadratic function approximating
the displacement field in the vicinity of the interface between the finite-element discretization and
the meshfree discretization may be constructed via a least-squares fit. The nodes and peridynamic
material points within a distance equal to the peridynamic horizon of the mesh-meshfree interface
are used as fitting data, and the resulting approximation of the displacement field is used to specify
the displacements of the nodes located on the Albany element faces at the mesh-meshfree interface.

Coupling of the Albany and Peridigm codes is demonstrated in Figures 7.7 and 7.8 for a bar
under tension. As shown in Figure 7.7, the bar is discretized into five domains: meshfree peridy-
namics at the center of the bar, coupled at both ends to peridynamic partial stress regions, which
are in turn coupled to classical continuum mechanics regions. Boundary conditions are applied
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Figure 7.6: The peridynamic partial stress formulation requires communication between material
points across multiple elements. Peridynamic bonds are shown in red.
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Figure 7.7: Configuration for coupled simulation including classical continuum mechanics, a
partial-stress peridynamic model, and a standard meshfree peridynamic model.

only at the free surfaces at the ends of the bar, which avoids the need to apply constraints directly
to the nonlocal model. The simulation was carried out as a static problem using the Newton-free
Jacobian Krylov solver available in Albany. The computational solution successfully recovers the
expected linear displacement, as shown in Figure 7.8.
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Chapter 8

Summary

Peridynamics is a nonlocal extension of continuum mechanics that provides a consistent mathe-
matical framework for modeling material failure and fragmentation [61, 64, 65, 43]. This is in
contrast to the partial differential equations of the Cauchy theory, which do not apply directly on
these mathematical singularities because the necessary partial derivatives of the deformation are
not defined there. The foremost advantage of peridynamics is that it does not require specialization
for the treatment of discontinuities, and instead aims to incorporate directly phenomena such as
cracks, dislocations, and voids. Further, the meshfree discretization of peridynamics developed by
Silling and Askari [63] provides a means to simulate propagating cracks and large deformations.
Limitations of peridynamics for engineering analyses include computational expense and the need
to apply boundary conditions over a nonlocal volumetric region [2, 43]. This motivates the devel-
opment of strategies for combined simulations in which peridynamics is employed only in regions
susceptible to material failure, and a local model is applied elsewhere.

This report is an overview of the LDRD project “Strong Local-Nonlocal Coupling for Inte-
grated Fracture Modeling,” completed within the CIS Investment Area at Sandia National Labo-
ratories. The principal goal of this project was the development of novel local-nonlocal coupling
formulations to enable direct integration of peridynamic models within analysis codes based on
classical continuum mechanics. In addition to the treatment of local-nonlocal interfaces, effective
integration of peridynamics and classical continuum mechanics required advances in peridynamic
modeling, including improved constitutive models, failure models, and discretization strategies.

The most significant research and development accomplishments of this project are:

• The partial-stress and splice formulations for peridynamic models that enable the use of a
variable nonlocal length scale, greatly reducing the mathematical incompatibility between
local and nonlocal equations [67, 66].

• A novel blending-based coupling strategy for the coupling of peridynamics and classical
continuum mechanics [55].

• A class of position-aware peridynamic constitutive models that dramatically reduce surface
effects at domain boundaries [37].

• Strategies for improved performance and convergence behavior of meshfree peridynamic
models [51, 56].
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• A novel approach to modeling ductile failure within the peridynamic framework.

• Software implementations within the Peridigm [46, 48] and Albany [50] codes of the partial-
stress coupling strategy, the position-aware constitutive models, and the enhancements to
meshfree peridynamic models for improved performance and convergence behavior.

The accomplishments of this project have been disseminated through journal articles, book chap-
ters, and conference presentations, as detailed in Appendix A.

Development of local-nonlocal coupling strategies for integrated fracture modeling has drawn
on expertise at the forefront of mathematics, computational mechanics, scientific computing, and
engineering. The resulting approaches for combined local and nonlocal simulations have appli-
cation to a broad class of problems in the areas of nuclear and conventional weapon safety and
surety. Improving peridynamics as an engineering tool and better enabling its integration within
existing analyst workflows provide a path forward for predictive simulation of material failure and
fracture.
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